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ABSTRACT

Spatial variability in precipitation has received little attention in the study of 
connections between climate, erosion, and tectonics. However, long-term precipita-
tion patterns show large variations over spatial scales of ~10 km and are strongly 
controlled by topography. We use precipitation rate estimates from Tropical Rainfall 
Measuring Mission (TRMM) satellite radar data to approximate annual precipita-
tion over the Himalaya at a spatial resolution of 10 km. The resulting precipitation 
pattern shows gradients across the range, and from east to west along the range, 
and fivefold differences between major valleys and their adjacent ridges. Basin-wide 
average precipitation estimates correlate well with available measured mean runoff 
for Himalayan rivers. Estimated errors of 15%–50% in TRMM-derived annual pre-
cipitation are much smaller than the spatial variability in predicted totals across the 
study area. A simple model of orographic precipitation predicts a positive relation-
ship between precipitation and two topographically derived factors: the saturation 
vapor pressure at the surface and this pressure times the slope. This model captures 
significant features of the pattern of precipitation, including the gradient across the 
range and the ridge-valley difference, but fails to predict the east-west gradient and 
the highest totals. Model results indicate that the spatial pattern of precipitation is 
strongly related to topography and therefore must co-evolve with the topography, and 
suggest that our model may be useful for investigation of the relationships among the 
coupled climate-erosion-tectonic system.
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INTRODUCTION

Growing evidence for a strong role of erosion in the tectonic 
and topographic development of mountain ranges motivates 
efforts to understand feedbacks between climate, erosion, and 
tectonics. While spatial gradients in erosional processes and tec-
tonic forcing have prompted much study, most models of erosion 
consider climate to be spatially uniform. Yet spatial patterns in 
precipitation are influential both in shaping topography through 

erosion and as sensitive functions of topography at sub–moun-
tain-range scales.

Spatial patterns of precipitation in Nepal (Barros et al., 2000), 
the Alps (Frei and Schär, 1998), and the Olympic Mountains 
(Anders et al., 2004; see also Barros and Lettenmaier, 1993) are 
characterized by remarkable and persistent variation on scales of 
tens of kilometers. Spatial variability in precipitation confounds 
the common substitution of drainage basin area for river dis-
charge in modeling patterns of fluvial incision, and the use of this 
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substitution in areas with strong spatial gradients in precipitation 
can lead to significant differences in predicted patterns of erosion 
(Roe et al., 2002, 2003; Finlayson and Montgomery, 2003).

Topography itself has a profound effect on spatial patterns 
of precipitation both globally and regionally (e.g., Smith, 1979). 
Mountains influence the flow of air and disturb the vertical strati-
fication of the atmosphere by acting as physical barriers and as 
sources or sinks of heat (e.g., Barros and Lettenmaier, 1994). At 
the scale of entire mountain ranges (hundreds of km) the rain-
shadow effect has a well-documented and significant influence 
on precipitation patterns. Enhanced precipitation on the wind-
ward side of mountain ranges has been recognized in the geo-
logical community as a long-term control on landscape evolu-
tion and the geotectonic development of mountain ranges (e.g., 
Koons, 1989; Beaumont et al., 1992; Hoffman and Grotzinger, 
1993;Willett, 1999; Montgomery et al., 2001). However, forced 
ascent on the windward side is not the only way that the atmo-
sphere interacts with topography; instead of rising over the topog-
raphy, the air may be blocked or diverted around the range (e.g., 
Simpson, 1987). Alternately, the flow of air over the topography 
may excite internal waves, due to the vertical density stratifica-
tion of the atmosphere (e.g., Durran, 1986). Mountains can also 
warm the air above them, drawing air from low levels up and 
triggering condensation or convection on the slopes, as has been 
observed in thunderstorms on the eastern slopes of the Rocky 
Mountains (Tripoli and Cotton, 1989). The vertical profiles of 
temperature and moisture content and the velocity of the incom-
ing air, which vary from storm to storm, as well as characteris-
tics of the topography, including the length, width, and height 
of the mountain range, determine how the atmosphere interacts 
with the mountains (e.g., Houze, 1993). Nevertheless, if spatial 
patterns of precipitation are relatively stable over time and are 
consistently related to topography in a given region, the pattern 
of erosion, and therefore the topography, must co-evolve with 
patterns of precipitation.

Current knowledge about the climatological annual precipi-
tation pattern in the Himalaya is derived from rain gauges, and 
several interpolations are available (e.g., Leemans and Cramer, 
1991, Shrestha, 2000). Additionally, basin-scale orographic pre-
cipitation patterns have been studied using rain gauges in the 
Chenab (Singh et al., 1995) and Kosi basins (Dhar and Rakhe-
cha, 1981).

Orographic precipitation in a limited region of the central 
Himalaya has been documented with a dense gauge network and 
a variety of remote sensing techniques to investigate processes 
controlling precipitation distribution on the scale of 10–20 km 
during storm events and monsoon seasons (Barros et al., 2000; 
Lang and Barros, 2002, 2004; Barros and Lang, 2003). These 
studies have revealed large gradients in seasonal precipitation 
totals over short (~10 km) spatial scales that are not simply 
related to elevation (Barros and Lang, 2003). Additionally, they 
have documented differences in monsoon season (June–Sep-
tember) diurnal precipitation patterns at high (>2000 m) and 
low elevations that relate to daytime upslope winds switching 

to weak nighttime downslope winds (Barros et al., 2000; Bar-
ros and Lang, 2003). Satellite precipitation radar tracks reveal 
large regions of stratiform precipitation with embedded convec-
tive cells during the monsoon season (Lang and Barros, 2002). A 
spatial association of weak convective cells and clouds with SW 
facing ridges during the monsoon season was noted by Barros et 
al. (2004). Nearly all of the precipitation occurring below 2000 
m is rain, while at higher elevation stations snow accounts for 17 
± 11% of annual precipitation totals, with this fraction increas-
ing with elevation (Lang and Barros, 2004). Winter precipitation 
is associated with Western Disturbances that cause wintertime 
precipitation over northern India and Kashmir (Lang and Barros, 
2004). See Barros et al. (this volume) for modeling studies of 
monsoon onset and winter storm events illustrating the role of 
complex topography in shaping cloud patterns.

The long-term pattern of precipitation in mountains gener-
ally and the Himalaya in particular is poorly constrained due to a 
lack of measurements of precipitation on spatial scales of a few 
tens of kilometers or less, and a lack of measurements extending 
back over more than a few years or decades. The dearth of infor-
mation on spatial patterns of precipitation is in part due to the 
difficulty of measuring precipitation over appropriate spatial and 
temporal scales. Rain gauges provide information on precipita-
tion, but existing rain-gauge networks, especially in mountainous 
areas, are generally not dense enough to reveal variability in pre-
cipitation over spatial scales of tens of kilometers—scales over 
which topography and precipitation can vary significantly. Rain 
gauges themselves are subject to several kinds of errors, includ-
ing the local disturbance to flow that they create, the difficulty 
of automatically measuring snow water equivalence, and the 
fact that gauges are a point measurement and may not represent 
average precipitation over a larger region (e.g., Groisman and 
Legates, 1994; Sinclair et al., 1997; Dingman, 2002). In general, 
rain-gauge networks tend to undersample high elevations rela-
tive to lower elevations (e.g., Frei and Schär, 1998; Colle et al., 
1999). The extrapolation from a rain-gauge network to a continu-
ous field of precipitation via a statistical algorithm (such as the 
PRISM method of Daly et al., 2002) relies on an assumed rela-
tionship between precipitation and topography that is difficult to 
justify given the sparse sampling of gauge networks and space-
time variability of weather conditions. Finally, the establishment 
and maintenance of dense gauge networks in remote mountain-
ous regions such as the Himalaya is daunting and to date has only 
been done over one small area in the central Himalaya (Barros et 
al., 2000).

The remote sensing of precipitation via radar reflectivity, 
therefore, provides an attractive approach to defining spatial 
patterns of precipitation in mountains. The first spaceborne pre-
cipitation radar, aboard the Tropical Rainfall Monitoring Mission 
(TRMM) satellite provides a unique opportunity to assemble 
data on spatial patterns of precipitation in low-latitude mountain 
ranges. This instrument allows us, for the first time, to collect 
spatially continuous information on precipitation in mountains. 
As such, TRMM is a novel tool worth examining as a means 
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of understanding spatial patterns of precipitation and erosion in 
areas sampled by the satellite. Herein, the focus is on using the 
TRMM satellite to define spatial patterns of annual precipitation 
in the Himalaya and to compare these patterns with topography 
in the context of geomorphological applications.

PRECIPITATION PATTERNS IN THE HIMALAYA 
FROM TRMM

The evaluation of landscape evolution–climate feedbacks 
in our study area requires a detailed map of precipitation rate 

Figure 1. Location map, topography, and Tropical Rainfall Measuring Mission (TRMM) annual precipitation pattern. The study area is indicated 
in the top panel by the large box, along with a subregion near Namche Barwa at the eastern syntaxis of the range. The topography is shown in 
shaded relief in the middle panel, and the white boxes indicate the locations of cross sections shown in Figure 3. The lower panel shows the 
annual precipitation map (m/yr) that we created from four years of the TRMM satellite’s precipitation radar precipitation rate estimates for the 
entire study area; inset is a close-up of the Namche Barwa region. The pattern of precipitation is closely related to topography. At the largest 
scale, the dry Tibetan Plateau and the wet Indian plains strongly contrast and a subtler gradient from east to west is apparent. At the scale of a 
few tens of kilometers, precipitation tracks topography, following large valleys north into the Himalaya. In addition, precipitation maxima in the 
southeastern end of the study area are observed with estimated annual precipitation totals in excess of 9 m/yr
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over a comparatively wide area (36°N−25°N, 105°E−65°E). 
The TRMM satellite uses spaceborne radar to provide accurate 
estimates of near-surface precipitation rates. We obtained the 
near-surface rain rate estimates from the 2A25 radar profile data 
(http://daac.gsfc.nasa.gov/hydrology/).

TRMM’s precipitation radar operates at a frequency of 
13.8GHz and can detect reflectivities down to ~18 dBZ, corre-
sponding to rain rates of ~0.7 mm/h. Snow has a lower radar 
reflectivity for a given water equivalent than rain, and estimates 
of the relationship between reflectivity and water equivalent used 
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Figure 2. Four years of annual precipitation estimates from Tropical Rainfall Measuring Mission (TRMM). While there is some variability at 
the pixel scale (10 km), the overall pattern is remarkably consistent from year to year.
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by the U.S. National Weather Service (http://www.nssl.noaa.
gov/teams/watads/public_html/snow/snow.htm) suggest that the 
~20 dBZ detection limit would still allow for detection of dry 
snow with > ~1 mm/h of water equivalent. However, the TRMM 
algorithms for converting measured reflectivity profiles to near-
surface rain rates assume the precipitation is liquid water, which 
would underestimate the water-equivalence if the precipitation 
were snow. Additionally, the attenuation estimates are based on 
liquid precipitation rather than ice. The next generation of satel-
lite precipitation measurement is being developed in the Global 
Precipitation Measuring Mission and may include a dual-fre-
quency precipitation radar, which will be able to detect lower 
snow and rain rates and to distinguish between snow and rain 
using attenuation differences.

As discussed below in our estimates of sampling error, we 
must balance increasing spatial resolution against a decreasing 
number of instantaneous estimates of rain rate. This balance 
influenced our choice to grid our study area (Fig. 1) into 0.1 × 0.1 
degree boxes (~10 km × 10 km).

TRMM provides 4 yr of instantaneous rain rate estimates 
in the study area (1998–2001), which are used to calculate the 
average rain rates and create a map of average annual precipita-
tion (the climatology). The TRMM satellite orbit was designed 
to sample every location at different times of the day, over a 46 
d cycle. By dividing each year of TRMM estimates into eight 46 
d periods, an even sampling of the diurnal cycle was produced, 
and we avoided bias due to diurnal cycles in precipitation. The 
average rain rate for each 46 d period was multiplied by the dura-
tion of the period to get an estimated volume of precipitation for 
that time period. These volumes were then summed to obtain 
an annual precipitation total for each year (Fig. 2). The annual 
totals from each of the four years studied were averaged to cre-
ate the average annual climatology (Fig. 1). The total number of 
samples in a grid box during a 46 d period varied from ~90 to 
~400 as a function of latitude. About 95% of all samples were 
zeros (no precipitation). A small fraction (<0.01%) of the sur-
face rain rate data exceeded 100 mm/h, which is unreasonable for 
regions larger than 100 km2 (Kozu et al., 2001). These anomalous 
data values were considered artifacts and were removed from the 
analysis.

Figures 1 and 2 present the average annual precipitation cli-
matology and the precipitation totals for each of the four individ-
ual years studied. This is the first time that spatially continuous 
precipitation data at such high spatial resolution (~10 km × 10 km) 
have been published for the Himalaya, and they reveal striking 
variability across, along, and within the range, as well as a robust 
spatial pattern that is consistent between all four individual years. 
The large-scale features of the precipitation pattern—namely 
the steep gradient in precipitation from the wet foreland to the 
arid Tibetan Plateau and the decrease in precipitation from east 
to west along the range—are clearly illustrated by the TRMM 
estimates (Fig. 3). In addition, there is remarkable structure at 
smaller scales, including large precipitation totals following big 
valleys up from the plains. This is illustrated in the inset portion 

of Figure 1, which shows a subset of the data near the eastern syn-
taxis of the range. The zone of high precipitation closely follows 
the valley of the Tsangpo/Brahmaputra River north, as far north 
as regions that are within the dry higher Himalaya and southern 
Tibet, leading to large variations in precipitation between ridges 
and valleys along the strike of the range. In addition, a double 
band of high precipitation totals in the central and western por-
tions of the range coincides with the first and second significant 
rises in topography approaching the Himalaya.

The stationary nature of the spatial pattern of annual precipi-
tation in the four years studied is significant because it supports 
the notion that spatial patterns of precipitation are stable through 
time and hence would influence the evolution of topography 
through the related spatial pattern of erosion. The stability in 
time of relative differences in precipitation across space is a key 
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Figure 3. Cross sections of topography and precipitation. The black 
lines and dark gray shading show the mean elevation (m) and range of 
elevations along the cross sections indicated in Figure 1. The dashed 
line is the 4 yr average annual precipitation (mm/yr) estimated with 
Tropical Rainfall Measuring Mission (TRMM) precipitation radar. 
Light gray shading indicates the range of precipitation values. The cor-
relation of precipitation and topography is evident in the sharp increase 
in both along the Himalayan front.
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requirement for the co-evolution of precipitation patterns with 
topography. From the point of view of landscape evolution over 
timescales of 104–105 yr, we cannot necessarily constrain differ-
ences in the magnitude of precipitation in time due to long-term 
climate variability. But if the spatial pattern of relative precipita-
tion totals is stable, the interactions among precipitation, erosion, 
and topography can be modeled.

ERROR ESTIMATION

Basin-Wide Average Annual TRMM Precipitation versus 
Measured Mean Annual Runoff

Evaluating the TRMM precipitation pattern with ground-
based measurements is difficult, due to the general lack of 
rain gauges in the region. Barros et al. (2000) are currently 
working on the ground validation of the TRMM precipitation 
radar algorithm on an event basis in a small region in central 
Nepal. Herein, we wish to evaluate the TRMM-derived annual 
precipitation pattern at the drainage-basin scale, where data are 
available. Therefore, we turn to field measurements of river 
discharge, compiled from several sources by Finlayson et al. 
(2002) as a check on the integrated pattern of precipitation over 
drainage basins (Table 1, Fig. 4). The 19 basins were defined 

using digital topography from SRTM (Shuttle Radar Topography 
Mission) with a spatial resolution of 1 km. The average TRMM-
derived precipitation within each basin was compared to the 
measured discharge in the basin divided by the basin area 
(annual mean runoff) (Fig. 4). There is a remarkable correlation 

398-03

TABLE 1. RIVER DISCHARGE MEASURMENT LOCATIONS AND MEAN TROPICAL RAINFALL 
MEASURING MISSION (TRMM) ANNUAL PRECIPITATION 

River and location Latitude 
(°N)

Longitude
(°E)

Basin area
(km2)

Measured 
discharge
(km3/yr) 

TRMM average 
annual precipitation

(m/yr) 

Kali Gandaki—Koketani 84.4 27.8 3452 1.67 0.30 

Kali Gandaki—Aval Beni 84.4 27.8 5637 5.35 0.85 

Kali Gandaki—Ramdi 84.1 28.1 10,491 15.9 1.35 

Kali Gandaki—Kot 84.5 27.9 44,819 19.20 1.40 

Seti—Sarang Ghat 84.8 27.8 29,242 8.70 0.23 

Seti—Kotre Bazar 84.9 27.8 997 3.29 2.54 

Marsyandi—Markichok 85.2 28.0 4164 7.35 1.24 

Bhuri—Beni Ghat 87.3 27.6 4994 6.35 1.05 

Trisuli—Adamghat 87.2 27.3 5582 8.08 0.90 

Trisuli—Betrawati 87.2 26.9 4640 4.73 0.56 

Arun—606 74.4 36.0 57,705 19.70 0.73 

Arun ? 74.6 35.6 31,268 13.70 0.29 

Arun ? 72.9 34.8 29,941 8.92 0.22 

Tsangpo—179 75.1 32.9 111,449 16.80 0.22 

Tsangpo—180 74.4 34.3 170,793 30.70 0.23 

Tsangpo—181 89.7 29.4 206,528 60.50 0.25 

Jhelum—Baramula 92.0 29.3 12,380 6.70 0.71 

Chenab—Alkhnoor 94.6 29.5 21,916 25.60 0.62 

Chenab—Panjnab 84.4 27.8 181,226 98.60 0.82 
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Figure 4. Tropical Rainfall Measuring Mission (TRMM) basin-wide 
average annual precipitation compared to measured mean runoff. The 
basin-wide averages of TRMM annual precipitation estimates corre-
late well with measured mean runoff (annual discharge/basin area) for 
19 catchments listed in Table 1. The linear regression forced through 
the origin is shown as a black line. The 1:1 line is indicated by a dashed 
line. TRMM estimates generally fall below measured mean runoff val-
ues, suggesting that TRMM underestimates precipitation.
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between these quantities in a least-squares linear regression 
forced through the origin (TRMM average precipitation = 
0.77 × measured unit discharge, R2 = 0.88). This correlation is 
found for rivers with basin areas ranging from 1000–200,000 
km2, mainly along the Himalayan front. We recognize that the 
annual mean runoff of these rivers is influenced by evaporation 
and unreturned infiltration, which we do not attempt to model 
in addition to precipitation. However, the strong correlation 
between TRMM average precipitation and measured mean 
runoff indicates that TRMM-derived precipitation estimates 
provide a reasonable proxy for discharge along the Himalayan 
front and are an improvement over previous data sets, such as 
Leemans and Cramer (1991) used by Finlayson et al. (2002). 
Moreover, it suggests that the spatial pattern of precipitation 
estimated using TRMM is sufficiently well defined to capture 
the differences in average precipitation between these 19 basins 
for use in our purposes, namely, exploring the relationship 
between precipitation and topography and its role in long-term 
landscape evolution.

Ground Clutter Error Estimates

In addition to noting the empirical accord between TRMM 
average annual precipitation and measured mean runoff in a 
number of rivers, we also constrained the theoretical errors in 
using TRMM estimates to approximate annual precipitation 
totals. TRMM estimates are subject to both measurement error 
and sampling error. The former includes the error in the measure-
ment of radar reflectivity, the attenuation correction to account 
for the decrease in reflectivity as the beam travels from the rain 
back to the satellite, and the semi-empirical rain rate–reflectivity 
relation. Efforts to estimate measurement errors are under way 
at various ground validation sites, including a site in Nepal that 
is included in our study area (Barros et al., 2000). A comparison 
of a limited data set of ~250–300 TRMM precipitation estimates 
(20–70 rain events) to gauge records at the Nepal calibration site 
shows a higher probability of detection with better skill scores 
as well as a higher false alarm rate for low elevation (<2000 m) 
versus high elevation gauges during the summer monsoon (Bar-
ros et al., 2000). This observation of bias at high elevations is not 
due to snowfall being missed, as these observations were made 
during the summer. Moreover, the same difference between high 
and low elevations is seen if only events with rain rates higher 
than 0.5 mm/h (theoretically within the sensitivity of the satel-
lite) are considered (Barros et al., 2000). Part of this discrepancy 
could be related to the ground clutter algorithm truncating the 
profile above precipitation near the surface at high elevations.

As ground clutter artifacts could lead to a systematic, spa-
tially coherent measurement error in mountainous regions, we 
investigated this component of the measurement error. Ground 
clutter artifacts are due to radar returns from Earth’s surface that 
are misinterpreted as reflectivity due to water droplets. These 
commonly result from a radar beam reflecting off of steep 
slopes. As the incidence angle of the beam increases, the chance 

for slopes to reflect the beam increases. The ground clutter algo-
rithm used in creating the TRMM near-surface rain rate field 
guards against ground clutter measurement errors by remov-
ing the data less than 1 km above the ground (Meneghini et al., 
2000).

In the Himalaya, however, elevation can vary significantly 
over short spatial scales; several kilometers of relief are expected 
in some of our 100 km2 grid boxes, complicating the removal of 
ground clutter artifacts. The algorithm may be too conservative 
and cut off reflectivity measurements from precipitation near the 
ground, or it may erroneously keep ground reflections from iso-
lated peaks. To investigate the potential impact of ground clut-
ter artifacts in the processed surface rain rates, we rely on the 
assumption that clutter is a function of incidence angle. Specifi-
cally, we examined near-surface rain rates as a function of look 
angle for a subregion of our study area near the eastern syntaxis 
of the Himalaya (29°N–31°N, 94°E–96°E). For the region as a 
whole, average rain rate is not a simple function of look angle 
(Fig. 5). However, the average rain rate over four years is slightly 
higher for look angles between 13.5 and 17 degrees (the highest 
look angles) than for look angles from 0 to 13.5 degrees (Fig. 
5). This difference cannot be accounted for by either a few very 
large values of rain rate at high look angles, nor by a greater fre-
quency of rain reported at high look angles. At high look angles, 
no rain is detected ~97% of the time, identical to that of the data 
set as a whole and to the subsamples with other look angles.

We examined the spatial pattern of average rain rate derived 
from samples taken at five classes of look angle and found that 
for the lowest four groups of look angle, the patterns are remark-
ably consistent. In the highest class of look angle, representing 
~20% of the data, the pattern is somewhat different, with more 
precipitation measured in the high mountains to the northeast, 
suggesting some spatial coherence to the difference in rain rate 
between high and low look angles (Fig. 5). Further work could 
refine identification of the areas most influenced by this effect 
and evaluate the total impact on the error of removing the high-
est look angles from the data set. Nonetheless, for the purposes 
of this analysis, effects from ground clutter are small compared 
to the overall pattern, that is, the spatial pattern observed is not 
dominated by ground clutter artifacts. For the purpose of esti-
mating annual discharge for use in landscape evolution model-
ing, ground clutter artifacts are negligible.

Sampling Error Estimates

The second type of error, sampling error, is the error in using 
a discrete number of measurements of rain rate to estimate the 
average rain rate and compute rainfall totals. When dealing with 
a small number of samples, sampling error is likely to be much 
larger than measurement error (Bell and Kundu, 2000). One 
of the goals of the TRMM mission is to produce monthly pre-
cipitation totals in 2° × 2° grids (approx. 40,000 km2) over the 
area surveyed by the satellite. Several authors have concluded 
that these totals have sampling errors of ~10% (e.g., Shin and 
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North, 1988; Bell and Kundu, 2000). We used three independent 
methods to estimate the sampling errors we would expect for our 
much higher spatial resolution (100 km2) precipitation totals with 
temporal resolution of 4 months to 1 yr (Table 2).

First, two rain-gauge precipitation records from the TRMM 
ground validation site in Nepal (Khudi, elevation 780 m, Koprung, 
elev. 3133 m; Barros et al., 2000) were used in a Monte Carlo 
simulation of sampling error. The year or monsoon-length rain-
gauge record was randomly scrambled in day-length intervals 
and then sampled according to the TRMM overpass cycle to cre-
ate 100,000 simulated TRMM records. The resulting simulated 
TRMM estimates of yearly and monsoon precipitation totals 
were compared to the gauge measurements over these periods to 
determine the error (standard deviation of the simulated TRMM 
samples divided by the total gauge-measured precipitation). The 
error determined from these simulations is 24%–30% for the year 
and 27%–29% for the monsoon season only (Table 2).

Shin and North (1988) and Bell and Kundu (2000) provided 
theoretical equations for satellite sampling error, both of which 
use a Markov model of precipitation such that:

 R Be( ) /τ τ τ= − 0, (1) 

where R is precipitation rate, τ is time, τ
0
 is decorrelation 

time, and B is a constant. Shin and North (1988) proposed an 
equation based on the orbital parameters of the satellite as well 
as the decorrelation time of the precipitation and the coefficient 
of variation, defined as the constant B over the mean rain rate. 
We used three estimates of the decorrelation time, one of 1.1 h 
from Bell (1987), a maximum estimate of 10 h from Shin and 
North (1988), and estimates of 6 h and 5.7 h derived from fitting 
a Markov model to the Khudi and Koprung gauges in Nepal. We 
estimated the coefficient of variation using GATE (Global Atmo-
spheric Research program Atlantic Tropical Experiment) data 
presented in Shin and North (1988), as well as their maximum 
estimate and one estimate calculated from the Nepal data. This 
range of parameters gave us nine estimates of yearly and mon-
soonal sampling error in precipitation totals of 14%–34% and 
24%–60%, respectively (Table 1).

Bell and Kundu (2000) provided an alternate model of 
sampling error. We assume that our sampling grid resolution of  
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Barwa region is shown as a function of satellite look angle in 5 equal classes from 0 to 17 degrees. For the lowest four classes of look angle, the 
spatial pattern of rain rate is similar. However, for the highest look angles, higher rain rates are observed up the slopes to the northeast of the 
river valley than in the other classes, perhaps due to increased ground clutter errors at high look angles. In the lower right, the average rain rate 
over the Namche Barwa area is shown as a function of look angle, with various cutoffs in the largest values shown as different colors. The cutoff 
values are in mm/yr and range from 10 to no cutoff. Average rain rate over the domain is not a simple function of look angle, nor do large values 
of rain rate strongly influence the observed average rain rates.
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~10 km × 10 km is small enough that the entire area is receiving 
precipitation at the same time, so that Bell and Kundu’s (2000) 
model reduces to

 ε τ= −





r
R N T

1 2 0

1
2/

,  (2)

where ε is the sampling error, R is the average rain rate, r is the 
average rain rate while it is raining, N is the number of samples 
taken, T is the length of time over which the samples are taken, 
and τ

0
 is the decorrelation time. Using the above-mentioned 

bounds on decorrelation time and using average rain rate and 
conditional rain rate from the Nepal data, this method yields error 
estimates of 18%–58% for yearly totals and 17%–52% for mon-
soon totals (Table 2).

Given the error estimates determined via the above three 
methods, we conclude that, even at 10 km resolution, sampling 
errors are small enough that the precipitation totals are suitable 
for the purposes we intend of estimating annual river discharge, 
modeling erosion, and comparing precipitation and topography 
throughout the Himalaya. At smaller spatial scales, the number of 
independent samples of precipitation rate decreases, making the 
errors greater according to all estimates. Therefore, the observed 
patterns can be used, albeit with caution, to investigate relation-
ships between precipitation patterns and topography at spatial 
scales of 10 km and larger.

COMPARING PRECIPITATION AND TOPOGRAPHY

In addition to using observed precipitation fields to estimate 
modern fluvial incision rates, we are interested in understanding 
how topography and precipitation patterns co-evolve over long 

time periods. In order to address this question, models of how 
precipitation relates to topography are needed to determine how 
precipitation patterns change as topography evolves. Toward this 
end, we examine the relationship between the TRMM precipi-
tation estimates and characteristics of the modern topography, 
including elevation and slope. While we note that precipitation 
patterns can be influenced by topography through many different 
mechanisms that depend on both topography and the conditions 
of the air upwind of the mountains, we evaluate a simple theoreti-
cal model of orographic precipitation using the observed patterns 
of precipitation and topography in the Himalaya. The degree to 
which a simple model is successful in producing a reasonable 
precipitation pattern gives an indication as to the potential for 
modeling the co-evolution of precipitation and topography with 
such a model.

Theoretical Model of Orographic Precipitation

Roe et al. (2002) propose a simple model of orographic pre-
cipitation in which precipitation is proportional to the vertically 
averaged convergence of the moisture flux plus a background 
term. This model incorporates two effects: the decrease in water 
vapor with height in the air column, and the change in tempera-
ture of the air as it is forced up the topography in the direction 
of the prevailing winds. Following Roe et al. (2002), the model 
assumes that orographic precipitation is proportional to two 
terms. The first is saturation vapor pressure at the surface, which 
is approximately proportional to the total column moisture con-
tent. The second factor is the saturation vapor pressure multiplied 
by the slope of the topography in the direction of the prevailing 
wind. Thus:
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TABLE 2. SAMPLING ERROR ESTIMATES 

Monte Carlo simulation   Annual

24%

Monsoon

27%

Shin and North (1988) Estimate

Decorrelation time (hrs) 1.1 

Bell (1987) estimate 

6

Nepal data estimate 

10

Shin and North (1988) maximum 
estimate

 Annual Monsoon Annual Monsoon Annual Monsoon 

CV = 5 estimate from GATE 
data

17% 30% 15% 27% 14% 24% 

CV = 6.5 estimate from 
Nepal data 

22% 39% 20% 35% 30% 32% 

CV = 10 maximum estimate 
Shin and North (1988) 

34% 60% 18% 54% 27% 49% 

Bell and Kundu (2000) with rain rate estimate from Nepal

Decorrelation time (hrs) 1.1 

Bell(1987) estimate 

6

Nepal data estimate 

10

Maximum estimate 

Shin and North(1988) 

 Annual Monsoon Annual Monsoon Annual Monsoon 

 58% 52% 41% 37% 18% 17% 
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 P S e Tsat∝ + × ×( ) ( )α β ,  (3) 

where P is precipitation, S is slope in the direction of the wind, e
sat

 
is saturation vapor pressure, T is surface temperature, and α and 
β are constants. The two factors in this model favor precipitation 
at low elevations and in areas with steep slopes facing into the 
dominant wind at low elevations. We denote surface saturation 
vapor pressure as Vp and slope times saturation vapor pressure 
as Svp.

In order to evaluate the fit of this model to the observations 
of precipitation and topography in the Himalaya, we must esti-
mate the values of the two terms using the topography. First, the 
topographic data from GTOPO30 were smoothed to the resolu-
tion of the TRMM precipitation estimates (10 km × 10 km cells). 
We derived a representative surface saturation vapor pressure in 
each cell by first roughly estimating the air temperature using an 
average temperature of 30 °C at sea level and a constant lapse 
rate of 7 °C/km. The saturation vapor pressure (e

sat
) as a function 

of temperature can be found using an approximation to the Clau-
sius-Calpeyron relation:

 e mb ssat
T= +6 112

17 67
243 5. ( )

.
.

Γ

,  (4)

where T is temperature in degrees Celsius (e.g., Emanuel, 1994). 
This gives Vp as a function of only elevation in the study area. 
To keep the model very simple, we compute Svp by multiplying 
Vp by the slope of the smoothed digital elevation model (DEM) 
in each grid box, neglecting the direction of the prevailing wind. 
Aspect could be introduced to this term as a proxy for wind 
direction. However, in the smoothed DEM of the Himalaya, the 
majority of steep slopes face the Indian side of the Himalayan 
arc, which is also the general direction of approach of the major 
weather systems (i.e., the mesoscale convective systems associ-
ated with the summer monsoons), suggesting that the addition of 
aspect into the model might be a relatively minor refinement. We 
compared these two topographic variables (Vp and Svp), as well 
as other simple topographic variables to the TRMM precipitation 
estimates using a statistical spatial regression model.

Statistical Relationships between TRMM Precipitation and 
Topographic Variables

The TRMM precipitation estimates, as well as the topo-
graphic variables, are autocorrelated in space; measurements for 
areas close together in space are likely to be close in value. Thus 
measurements at different locations are not strictly indepen-
dent, and a simple regression model may overstate relationships 
between the variables. Therefore, we used a regression model 
that accounts for spatial lags of the variables (e.g., Anselin, 
1993). It compares the values of chosen topographic variables at 
each point and the values of these variables at neighboring points 
to the local measured TRMM precipitation estimate. We used a 
MATLAB spatial statistics code (Pace and Barry, 1999) to find 

the ordinary least-squares (OLS) best-fit model of the form above 
and to evaluate the significance of each variable in this fit.

This model was used to find the best-fit coefficients for our 
theoretical model of orographic precipitation given the TRMM 
estimates and GTOPO30 topography. Additionally, we used the 
spatial regression technique for other topographic variables that 
may reasonably be related to precipitation, namely, slope (S), 
elevation relative to a reference elevation of 10 km (E), and the 
product of S and E (Se) to compare the fit for these variables 
versus that for our theoretical model. E is used rather than eleva-
tion relative to sea level, so that large values of E correspond to 
low elevations, as in Vp, where large values are found at low 
elevations. These variables were chosen because they allow for 
the evaluation of the importance of the nonlinear relationship 
between Vp and elevation versus the linear relationship between 
E and elevation, as well as the separation of the effects of slope 
alone in S and slope modified by an elevation term in Svp and 
Se. All the variables were standardized [(value – mean)/standard 
deviation], as were the TRMM estimates, so that the units and 
absolute magnitudes of these variables would not be important 
to the analysis.

The statistical model accounts for the spatial autocorrela-
tion of the topographic variables by computing an average of 
those variables at the four neighboring points for each point 
in the domain using a spatial weights matrix W. The observed 
values are regressed on both the topographic variables and the 
averages of the values at neighboring points (spatial lags). The m 
topographic (t

1
, t

2
, … t

m
) variables being evaluated are put into a 

matrix, T (n × m):

 T

t t t
t t t

t n

m

m=

1 2

1 2

1

1 1 1
2 2 2

( ) ( ) ( )
( ) ( ) ( )

( )




   
tt n t nm2 ( ) ( )

.  (5)

The regression model takes the form:

 T

a
a

a

W T

b
b

b

TRMM error

m m

* * *

1

2

1

2

 
+ = + ,  (6)

where TRMM is the n × 1 vector of the TRMM observations over 
the Himalaya, error is an n × 1 vector of the difference between 
the estimate and the TRMM value, and the coefficients a

1
 – a

m
 

are the OLS coefficients for the topographic variables, while b
1
 – 

b
m
 are the OLS coefficients for the spatial lags of those variables. 

We used the MATLAB code to compute the OLS estimates of the 
model parameters and the likelihood estimates for a hypothesis 
that each variable and its spatial lag have no effect.

The theoretical model of orographic precipitation that we 
present in equation 3 yields a good fit to the data in the spatial 
regression model with a mean error of 0.387. The model is shown 
in Figure 6 in the same units as the TRMM measurements (m/yr). 
Additionally, we examined the models that resulted from using 
every combination of 1–5 of the reasonable topographic vari-
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ables we considered (Vp, Svp, S, E, Se) and computed for each 
the mean absolute error and standard deviation of the error for 
each model. The errors from each model are given in Table 2.

Considering the best models with each number of variables, 
we find that Vp is the best 1-parameter model with a mean error 
of 0.460. The best 2-parameter model is our favored theoretical 
model: Vp and Svp, with a mean error of 0.387. In examining the 
best models with more than 2 parameters, we find that the mean 
error is not substantially decreased by adding more parameters 
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Figure 6. Tropical Rainfall Measuring Mission (TRMM) precipitation pattern, statistical model of precipitation, and error in the model. The 
TRMM-derived pattern of annual precipitation (m/yr) is shown over the entire study area in the top panel. The ordinary least-squares (OLS) best-
fit model of this pattern using Vp and Svp, shown in the middle panel, captures the gradient across the range and the tracking of precipitation up 
major valleys. The error in the model in the lower panel, also in m/yr, shows that the large-scale east to west gradient, as well as the smaller-scale 
maxima in precipitation in the east, are not captured by the model. The solid lines indicate the 1500 and 3500 m topographic contours.

(0.367 for the best 3-parameter model, 0.360 for a 4-parameter 
model, and 0.356 for the 5-prarmeter model) (Table 3). The coef-
ficients associated with the 3, 4, and 5 parameter models are dif-
ficult to interpret physically, as they include opposite signs for 
the coefficients of a variable and the spatial lags of the variable. 
The relative insensitivity of the mean error to the additional 
parameters, as well as the un-physical coefficients of these 3-, 
4-, and 5-parameter models, indicates that the simpler, physically 
based, theoretical model not only is a good fit to the data, but also  
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TABLE 3. ERROR IN STATISTICAL MODELS 

Variables Mean 
absolute

error

Standard
deviation of the 

error
E 0.594 0.923 
Vp† 0.460 0.806 
S 0.716 0.995 
Se 0.682 0.955 
Svp 0.563 0.837 
E, Vp 0.461 0.806 
E, S 0.598 0.868 
E, Se 0.573 0.836 
E, Svp 0.487 0.751 
Vp, S 0.458 0.759 
Vp, Se 0.431 0.712 
Vp, Svp† 0.384 0.666 
S, Se 0.565 0.834 
S, Svp 0.499 0.759 
Se, Svp 0.516 0.769 
E, Vp, S, 0.452 0.748 
E, Vp, Se 0.424 0.707 
E, Vp, Svp 0.347 0.664 
E, S, Se 0.536 0.813 
E, S, Svp 0.463 0.736 
E, Se, Svp 0.459 0.730 
Vp, S, Se 0.388 0.676 
Vp, S, Svp† 0.367 0.658 
Vp, Se, Svp 0.377 0.663 
S, Se, Svp 0.499 0.759 
E, Vp, S, Se 0.386 0.671 
E, Vp, S, Svp 0.367 0.658 
E, Vp, Se, Svp 0.374 0.661 
E, S, Se, Svp 0.460 0.729 
Vp, S, Se, Svp† 0.360 0.656 
E, Vp, S, Se, Svp† 0.356 0.656 

†The best model with each number of variables. 

provides the best explanation of the observed pattern using the 
topographic variables we considered.

The coefficients for the OLS best-fit model with the param-
eters Vp and Svp are 0.402 and 0.041 on Vp and Svp, respectively, 
and 0.114 and 0.452 on their respective spatial lags. The model 
successfully captures some principal features of the TRMM pre-
cipitation pattern, including the dry plateau and the wet foreland 
at the large scale, and the wet valleys and dry ridges, as well as 
the double band of precipitation along the central front part of the 
range. However, as shown in Figure 6, the model fails to capture 
the extremely high values of precipitation in the eastern end of 
the range, largely fails to capture the gradient from east to west 
along the range, and predicts much smaller maximum precipita-
tion totals (~3 m/yr versus 9 m/yr in the TRMM estimates).

In addition to the model for the whole Himalaya, the OLS 
best-fit coefficients for the preferred model were also found for a 
small subregion near the eastern syntaxis (Fig. 7); they are 0.014 
and 0.216 for Vp and Svp, respectively, and 0.509 and 0.227 on 
their spatial lags. As in the case above, the subregion model does 
capture principal aspects of the variability; the strong valley-ridge 
difference between the Tsangpo River and the surrounding high 
areas is reproduced in the model. Also, similar to the larger case, 
the model does not predict the largest precipitation totals in the 
TRMM estimates (~3.5 m/yr versus 6 m/yr). That the coefficients 

for this region differ so much from those for the whole study area 
is likely due to the greater importance of slopes on a regional 
scale; steep slopes comprise a greater fraction of small region 
than in the study area as a whole. It also reflects an inherent issue 
in modeling precipitation: processes involved in orographic pre-
cipitation are scale-dependent, and no single set of coefficients 
should be expected to be generally applicable.

DISCUSSION

The spatial pattern of precipitation as estimated from TRMM 
in the Himalaya shows considerable variability on scales less than 
100 km—spatial variability that is repeated in four separate years 
of measurements (Figs. 1–3). Similar seasonal gradients are seen 
in gauge records from the calibration site in Nepal (Barros et al., 
2000; Barros and Lang, 2003). Robust gradients in precipitation 
over spatial scales of tens of kilometers have important implica-
tions for both the study of orographic precipitation and for land-
scape evolution modeling. The fact that the large-scale pattern 
of precipitation does not change appreciably over time suggests 
that, at this scale, the pattern strongly reflects topography itself. 
Topography is obviously constant on this time scale, whereas the 
characteristics of the incoming air may vary significantly from 
event to event. At the pixel scale (10 km × 10 km) there are some 
large interannual differences; we cannot distinguish between 
those caused by sampling error and those by genuine variation in 
precipitation from year to year.

Figure 7. Model of Tropical Rainfall Measuring Mission (TRMM) data 
for the Namche Barwa subregion. The top left panel shows the TRMM 
annual precipitation estimates (m/yr). The top right panel shows the 
ordinary least-squares (OLS) model using Vp and Svp. The error (mod-
el-data) is shown in the bottom panel. As in the case of the entire study 
area, the model describes principal elements of the precipitation pat-
tern, but misses small-scale (<100 km) details. The solid lines indicate 
the 1500, 2500, and 3500 m topographic contours.
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Large differences in annual precipitation occurring in areas 
only tens of kilometers apart along the strike of the mountain 
range show that the common use of uniform precipitation fields 
in landscape evolution models does not realistically depict 
within-range variability in the climatic influence on erosion, 
even at small spatial scales. Most importantly for the consider-
ation of coupled climatic, erosional, and tectonic processes, the 
pattern of precipitation in the Himalaya is strongly controlled by 
the topography, as suggested by the success of our simple theo-
retical model and supported by remote sensing and modeling of 
cloud patterns in central Nepal (Barros et al., 2004). A pattern 
of precipitation that is robust and strongly related to topography 
must evolve as the topography develops and, hence, must also 
influence the development of topography through erosion. The 
co-evolution of precipitation patterns and topography merits fur-
ther research.

The TRMM precipitation radar is a useful tool for study-
ing precipitation and river discharge patterns in the Himalaya. 
TRMM can provide reasonable estimates of annual discharge for 
basins of more than 1000 km2 in the Himalaya. However, TRMM 
estimates of average annual precipitation are consistently smaller 
than measured unit discharge (86% of measured unit discharge) 
(Fig. 4). Moreover, since they do not account for evapo-transpi-
ration, we would expect that the TRMM estimates for the annual 
average precipitation in a basin would exceed annual unit dis-
charge. TRMM radar does not detect very low precipitation rates 
(less than 0.7 mm/h), so, to the extent that events characterized 
by such precipitation rates contribute to annual total precipitation, 
TRMM will underestimate this total. Additionally, TRMM’s 18 
dBZ detection limit does not allow for observation of low-mod-
erate snowfall rates and will underestimate the water equivalence 
of any snow detected. Snowfall is limited to higher elevations, 
and there is a tendency for more persistent and lighter rainfall 
at these same elevations at the Nepal calibration site (Lang and 
Barros, 2002, 2004). This suggests a bias toward underestimating 
precipitation at higher elevations. A comparison of TRMM pre-
cipitation estimates and measured mean runoff in other regions, 
especially those with known spatially varying average rain rates, 
could help constrain the errors associated with TRMM precipita-
tion estimates at high elevations and in complex terrain.

In the Himalaya, ground clutter may have a subtle influence 
on measurements for look angles greater than 13.5 degrees, but 
does not greatly impact the observed pattern of TRMM precipita-
tion estimates (Fig. 5). This influence is not seen in more obser-
vations of rain at high look angles than at lower look angles, nor 
as the addition of very high values of rain rate. Rather, the influ-
ence seems to be spatially correlated patches with higher average 
rain rates (Fig. 5). Our preliminary work suggests that a more 
extensive study of this problem could determine if the combina-
tion of measurement and sampling error would be improved by 
discarding the high look angle measures in some regions.

Three methods of constraining satellite sampling error sug-
gest that for yearly and monsoon precipitation totals in the Hima-
laya, sampling errors of 15%–50% are likely (Table 2). These 

errors are not trivial, but neither are they so large as to overwhelm 
the observed spatial pattern of precipitation; annual precipitation 
in our climatology varies from a few tenths of a meter to nearly 
10 m across the study area. The variability we measured spans 
nearly two orders of magnitude, far greater than the estimated 
15%–50% error. The close correlation of basin-averaged annual 
precipitation estimates and measured mean runoff supports this 
conclusion. Moreover, we are primarily interested in the spatial 
variability in precipitation rather than the magnitude itself, in part 
because the interannual and longer time-scale variability in this 
region is largely unconstrained. Provided that spatial patterns 
similar to those we observed persist over geologically significant 
time scales, they will be important for questions of landscape 
(and possibly tectonic) evolution in the mountain range. Such 
patterns may persist despite changes in the magnitude of precipi-
tation on the whole. Hence, the error estimates and correlation 
with discharge indicate that TRMM precipitation estimates can 
be used as a proxy for spatial patterns in precipitation in geomor-
phic applications, including discharge estimates for use in fluvial 
incision models and for evaluation of models of precipitation 
based on topographic variables.

The measurement and sampling errors involved in TRMM 
estimates of precipitation reported herein are likely to be depen-
dent on conditions specific to the Himalaya. Ground clutter 
errors may be a function of the relief in the region and formal 
sampling error estimates require local parameters such as decor-
relation time and average rain rate. Consequently, extension of 
this method of studying spatial patterns of precipitation to other 
low-latitude regions sampled by the TRMM satellite will require 
estimation of the local error to determine appropriate temporal 
and spatial scales for consideration.

A simple, physically based model for precipitation involving 
a linear combination of Vp, Svp, and spatial lags of these variables 
is statistically significant and captures most of the major features 
of precipitation in the Himalaya at the 10 km scale, including the 
increased precipitation in large valleys and the double band of 
high precipitation in the central part of the Himalayan arc (Figs. 
6 and 7). The statistical model might be improved by including 
a preferred wind direction and calculating the topographic slope 
into the wind rather than just the slope—the current model treats 
both- north and south-facing slopes equivalently. The relative 
success of this fairly simple model suggests that the decrease 
in temperature and saturation vapor pressure with height in the 
atmosphere and the direct forcing of air up slopes, especially at 
low elevations, are key controls on precipitation in the Himalaya 
at scales greater than ten kilometers.

However, the smaller scale (<200 km) maxima in precipita-
tion and the east to west gradient in precipitation along the range 
are not captured by the statistical model (Fig. 6). This indicates 
that, not surprisingly, factors other than air temperature and sim-
ple upslope motion are important in creating these patterns. In 
particular, the overland distance that air must travel to the range 
varies from east to west, and monsoon dynamics, and the asso-
ciated changes in temperature and humidity, may be important 
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in creating the east to west gradient along the arc. In the small 
regions with very high precipitation totals, dynamical conver-
gence of air, the triggering of convection, and the motion of con-
vective cells likely increase precipitation locally, in addition to 
the simple factors included in the statistical model.

The application of our physically based model as a predic-
tive model over evolving topography does require some further 
research. The difference in the relative magnitudes of the coef-
ficients of the statistical model for the whole region versus the 
subregion complicates the calibration of our physically based 
model for use in a predictive sense over evolving topography. An 
initial step may be to limit the domain considered in the statistical 
regression to the Himalayan arc itself to obtain parameters spe-
cific to this region. The difference between our statistical model 
and the measured TRMM climatology gives us some sense of 
the features that would be neglected if we were to model the co-
evolution of the precipitation pattern over developing Himala-
yan topography using our model (Figs. 6 and 7). It remains to be 
investigated as to whether these features create important feed-
backs with the landscape that impact its evolution over time.

Precipitation patterns as measured by TRMM in the Hima-
laya vary considerably over small spatial scales, as has also been 
noted for the Alps and the Olympic Mountains of western Wash-
ington, USA. Spatial patterns of discharge are certainly impor-
tant in determining the spatial variability in stream power and 
fluvial shear stress, and thus an understanding of the spatial pat-
terns of precipitation and discharge is important for estimating 
spatial patterns of erosion in mountainous landscapes. In addition 
to the relationship between fluvial incision and erosion, glacial 
erosion rates are expected to increase with ice discharge (e.g., 
MacGregor et al., 2000; Tomkin and Braun, 2002), and hence 
with rates of solid precipitation. Therefore the tendency for more 
precipitation in certain areas is likely to result in high erosion 
rates in those areas independent of whether glacial or fluvial pro-
cesses dominate. There may also be important local relationships 
between precipitation and erosion. For instance, Reiners et al. 
(2003) found that long-term erosion rates tracked spatial varia-
tion in twentieth-century precipitation across the Washington 
Cascades. If precipitation itself proves to be a useful predictor 
of spatial patterns of erosion, the importance of documenting the 
spatial pattern of precipitation in mountains becomes even more 
fundamental to our understanding of feedbacks between precipi-
tation and topographic development. Measuring and modeling 
spatial variability in precipitation will no doubt provide interest-
ing new insights into the continuing study of the interrelation-
ships between erosion, climate, and tectonics.
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