Modeling the collapse of Hebes Chasma, Valles Marineris, Mars

M.P.A. Jackson1,*, J.B. Adams2, T.P. Dooley1, A.R. Gillespie2, and D.R. Montgomery2

1Bureau of Economic Geology, Jackson School of Geosciences, University of Texas, Austin, Texas 78713, USA
2Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA

ABSTRACT

Physical modeling and detailed mapping of Hebes Chasma provide new insights into the crustal composition and origin of the Valles Marineris region of equatorial Mars. Hebes Chasma is a 315-km-long and 8-km-deep closed depression containing distinctive landforms that include diapirs and extensive allochthonous flows that end in pits. A central puzzle of Hebes Chasma is how and where 10^6 km^3 of missing material disappeared. Our physical models tested the hypothesis that the chasma formed by collapse and removal of material from below. Gravity-driven collapse in the models reproduced all the chasma’s main landforms as subsidence evolved from early sagging of the upper surface, to inward collapse and removal of material, to emergence of diapirs and low-gradient flows. The models and geologic evidence suggest that Hebes Mensa arched upward diapirically and raised deep stratigraphy almost level with the chasma rim. If the chasma indeed collapsed by subsurface drainage as occurred in the models, the upper 8–10 km of deposits at Hebes must have been solid to depths of ~5 km but viscous at greater depths. The materials removed could not have consisted mainly of basalt flows; instead, they probably were a mixture of hydrated and nonhydrated salts, water ice, liquid water, and insoluble (likely basaltic) particles. The proportions of these constituents are unknown but constrained because the material drained from the subsiding chasma and apparently contributed to the outburst floods released down neighboring Echus Chasma and Kasei Valles.

INTRODUCTION

The Valles Marineris chasmata are a strikingly linear set of trends tending east-southeast along the north rim of the Thaumasia Plateau in equatorial Mars (Fig. 1A). Among the northern chasmata is Hebes Chasma, a cavity 315 km long and 126 km wide. The chasma is more than 8 km deep from its rim at +3950 m to its floor at −4530 m and is one of the deepest canyons on Mars. This huge cavity implies removal of 10^6 km^3 of material (the present-day volume of the chasma estimated using Mars Orbiter Laser Altimeter [MOLA] data). The composition and fate of the vanished material are a puzzle that has exercised researchers trying to explain the origin of Valles Marineris chasmata and similar canyons (Table 1).

As deep as it is, Hebes Chasma is dwarfed in length by other major canyons nearby in Valles Marineris (Fig. 1A). However, Hebes Chasma has an unusual allure for research into the origin of the chasmata: This closed canyon lacks any surface outlets, so an origin by fluvial erosion is not viable. A hypothesis of downward drainage has been considered for Valles Marineris in general (Table 1) and for Hebes Chasma in particular through photogeologic mapping and a briefly described physical model of collapse (Adams et al., 2009). Here, we present the full results and structural analysis of physical modeling designed to test and elucidate the hypothesis of downward drainage and collapse inferred by Adams et al. (2009). We compare specific features of the models with geometrically similar Hebes landforms illustrated in Figure 1B and discuss these at length in the second half of the paper. This comparison leads to new insights into the evolution of landforms in Hebes Chasma. The conclusions have implications for the composition of the upper few kilometers of deposits in Hebes Chasma and elsewhere on Mars, but especially in the Valles Marineris region (Fig. 1A).

As far as we know, this is the first attempt to physically model the tectonics of a Martian canyon using scaled materials. The models reproduce the structures in Hebes Chasma and reveal a complex balance of karstic downward drainage, upward reactive diapirism, and surf ace flows partly akin to allochthonous salt tectonics on Earth. This balance varied over time and from place to place within the model and probably within Hebes Chasma too. Although the modeling and mapping provide a comprehensive view of how a distinctive suite of landforms evolved in Hebes Chasma, many pieces of the puzzle remain hidden.

PREVIOUS HYPOTHESES FOR FORMATION OF CHASMATA

Previous ideas on the origin of the chasmata have three themes: erosional excavation, tectonic rifting, and karstic collapse (Table 1). Surface erosion entails removal of 10^6 km^3 of material from the chasma by water or wind (Fig. 2A). Although fluvial erosion was widespread on Mars, removal of this volume of material by water erosion is impossible for Hebes Chasma because it lacks an outlet, and no fluvial channels are visible on the floor of either the chasma or canyons leading into it. Because of this fatal flaw, we do not consider further an origin for Hebes Chasma by fluvial erosion. Some wind erosion is likely. Within the chasma, wind has scoured yardangs and deposited sparse dunes and possibly some of the dark smooth deposits. Windborne sediment has undoubtedly left and entered the chasma, but the balance is unknown.

An origin by wind erosion would have several implications (Fig. 2A). Collapse structures in the chasma walls and in Hebes Mensa would have formed in response to the space produced by wind excavation. The youngest stratigraphic layers could not underlie the floor or the benches because erosion would have removed shallow units. The layered rocks exposed along the edges of benches would differ from the rimrock of the chasma. Hebes Mensa would be an erosional remnant of the same material as the walls, or it would consist of younger
deposits filling a precursor chasma then left as an erosional remnant after a second episode of chasma excavation.

Several features argue against wind erosion as the chief agent of chasma excavation. (1) The canyon rim is sharp and scalloped, not rounded, hollowed, or grooved by wind erosion. (2) Wind erosion cannot explain a wide variety of features in Hebes Chasma: the shape and scale of the excavated cavity; or the swale at the east end of the chasma; or the preservation of the plains surface and the youngest layers on fault-bounded benches; or the arcuate headwall scarps in the chasma walls; or the pits, flows, and diapirs in the chasma floor. (3) Only a thin mantle of dust covers the chasma rim, though wind could have carried and deposited the dust elsewhere on the planet. So although surface erosion by water or wind was undoubtedly important in other canyons (Table 1), it is unlikely to be the main agent that formed Hebes Chasma.

The tectonic rifting hypothesis invokes an origin by north-south tectonic extension, forming Hebes Chasma as a graben (Fig. 2B). Some features support this idea. (1) Regional structure obviously influenced the location of Hebes Chasma and its parallelism with other Valles Marineris chasmata. (2) Downdropped benches of younger layers and the many scarps of normal faults along the chasma walls also point to strong extensional control.

An origin by tectonic extension has several implications (Fig. 2B). The youngest layers would underlie the chasma floor and would be covered by deposits derived by wasting of chasma walls. Hebes Mensa could be a central horst, and the youngest layers of its crest would have been eroded. Alternatively, the mensa could consist of younger sediments deposited on the down-dropped plains surface. Layered rocks in the mensa extend almost as high as the chasma rim. So if they are depositional, they must have once filled the chasma. If they filled the chasma,
all that fill except for the present mensa must have been removed in an unexplained second episode of canyon formation.

Several features are inconsistent with a chasma origin purely by tectonic rifting (Fig. 1B). (1) The elliptical planform, abrupt scalloped margins, blunt ends, and roughly uniform depth of chasma are atypical of rifts (although Wilkins and Schultz [2003] explained the blunt ends by inferred reactivated cross faults, using criteria that can equally be explained by karstic subsidence). (2) Absence of extensional structures on surrounding plains, except for sporadic, narrow, shallow fossae, allows little north-south extension to create the huge volume of the chasma. (3) Pits and allochthonous flows on the floor and sides of the chasma and mensa are not extensional.

Because Hebes Chasma cannot be plausibly explained by erosional excavation or tectonic rifting, our paper focuses on the third main hypothesis: karstic collapse. Melting ground ice and draining meltwater loses volume, so melting ice was an early suspect for causing collapse (Sharp, 1973; Nedell et al., 1987). Because the present canyon walls are too steep to consist largely of weak ice, Spencer and Fanale (1990) inferred that ice accumulated in a strong graben that originally created the chasma. Permafrost ice is unlikely to be more than 1–2 km deep for plausible geotherms past and present, whereas the present floor of Hebes Chasma is 7–8 km deep. For this reason, Spencer and Fanale (1990) favored chemical dissolution or thermal decomposition of carbonates as the agent for karstic collapse.

Our discussion section revisits the question of the type of material that could have vanished from the chasma. Before that section, we describe the physical model results and illustrate how the results explain the landforms of Hebes Chasma and its mensa.

MODEL DESIGN

Model Rationale

Some geologic processes can be seen directly, but others must be inferred because either they do not occur today or they operate at inaccessible depths. Processes can often be inferred from fragmentary traces left by different stages of an incomplete process. However, this classic inductive approach in geology is impractical if much of the early history is erased. Given the large volume of material removed from Hebes Chasma, we can reasonably assume that most of the early evidence was destroyed as the chasma deepened further. We cannot see the processes that formed Hebes Chasma, only some of their results. It is because we do not know presumptively how the chasma formed that our models test the hypothesis that Hebes Chasma subsided by karstic withdrawal of material from below. The models simulated both subsidence and diapirism. Modeling did not address the cause of subsidence, merely the process and results of subsidence.

The advantage of physical modeling is that it illustrates how early subsidence could have occurred, evidence of which is sparsely preserved in Hebes Chasma. In the models, landforms changed as each new stage of subsidence altered or replaced older ones. Caution is advisable when interpreting timing in the physical models. No model could reproduce all the features of Hebes in the same sequence that they formed in different parts of the chasma. The models drained continuously, but we do not know how drainage rates varied in space and time on Mars. Hence, the models did not necessarily stop subsiding at the same local evolutionary stage as in the equivalent place in Hebes, nor did the models reproduce any geologic or...
erosional processes that may have further shaped Hebes Chasma after subsidence ended.

Model Materials

Ideally, the model materials should simulate the mechanical behavior of materials in Hebes Chasma. Matching mechanical behavior is difficult because the lithology of the chasma walls is uncertain. Chasma walls in the Valles Marineris show widespread layering (e.g., Malin and Edgett, 2001). A dominant inference is that these layers consist entirely of lavas flows, or lava interbedded with volcanic ash, or layered intrusions (e.g., McEwen et al., 1999; Beyer and McEwen, 2005). However, McEwen et al. (1999) could not exclude the possibility that the layers are largely sedimentary, and Beyer and McEwen (2005) concluded that Coprates Chasma walls consisted of thin, strong layers interbedded with thicker, weaker layers. Others have proposed unusually weak mixtures including salts to explain detachments and landslides in the Valles Marineris (Montgomery and Gillespie, 2005; Bigot-Cormier and Montgomery, 2007; Montgomery et al., 2009). Adams et al. (2009) presented evidence that Hebes Chasma and its mensa must be strong enough to sustain rugged topography but able to soften enough to have upwelled and flowed at the surface, and yielded fluids that drained or evaporated in vast quantities to form a closed depression.

The contrasting requirements of strength and the ability to flow, upwell, and drain implied by the landforms of Hebes Chasma suggest a three-layer mechanical stratigraphy for the models (Fig. 3). The uppermost unit 1 was represented by a strong, brittle layer of blue sand slightly moistened on its upper surface by mist from a squeezed water bottle. Dampness increased the cohesive strength of the sand surface and highlighted fractures and faults. Unit 1 simulated the erosionally resistant cap on the Martian plains surface, which responds to deformation by faulting. Next down, unit 2 was a weak, brittle layer of dry, glass microspheres having negligible cohesion and the ability to form particulate flows on slopes. This layer simulates the lower chasma walls, which are brittle but have ridge-and-gully topography suggesting material with lower frictional strength than the uppermost unit. At the base of the model was unit 3, a weak, viscous layer of near-Newtonian silicone polymer, polydimethylsiloxane. This unit simulates the deepest part of Hebes stratigraphy, which from the evidence presented later in this paper, we infer was mobilized as diapirs and allochthonous flows.

Model Construction

The stratigraphic thicknesses in Figure 3 filled a cutout in a rigid horizontal base having the planform of Hebes Chasma (Fig. 4). A wide bench separated the outer limit of unit 3 and the drainage slots. These sinuous slots of variable width in the rigid base of the model allowed overlying viscous and granular materials to drain out slowly. Drainage rates varied spatially depending on the width of the slots and the size of their catchment areas. A horizontal plate attached to a screwjack controlled the drainage rate through the overlying slots (Fig. 4). These irregular slots of controlled drainage represent any natural system of vertical drains, especially a system of irregular concentrations of fractures that may have widened into cavities in the upper kilometer or so as subsidence intensified. An “island” free of unit 3 localized the future mensa. The models deformed under 1g gravitational acceleration.

<table>
<thead>
<tr>
<th>Model stratigraphy and strength profile</th>
<th>Model materials</th>
<th>Hebes equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear strength, (\sigma) (qualitative)</td>
<td>Unit 1: strong, damp, brittle veneer of blue silica sand. 2 mm thick, scaling to 1 km. Strong cohesion; Density, (\rho = 1600 \text{ kg m}^{-3}) Coefficient of friction, (\mu > 0.65) Grain size, (d = 300 \mu \text{m})</td>
<td>Upper Hebes Formation (UHF). 600–1000 m thick. Resistant layered cap of chasma rim.</td>
</tr>
<tr>
<td>Model depth (cm)</td>
<td>Unit 2: weak brittle layer of solid, white, glass beads. 12 mm thick, scaling to 6 km. Weak cohesion = (2.5 \times 10^4 \text{ Pas}) Density, (\rho = 1600 \text{ kg m}^{-3}) Grain size, (d = 90 \mu \text{m})</td>
<td>Lower Hebes Formation (LHF). 6 km thick. Layered weak units now forming the lower part of chasma.</td>
</tr>
<tr>
<td></td>
<td>Unit 3: weak viscous layer. 20 mm thick, scaling to 10 km. Density, (\rho = 970 \text{ kg m}^{-3}) Dynamic viscosity, (\eta = 2.5 \times 10^4 \text{ Pas})</td>
<td>Lower Hebes Formation, 8–12 km thick. Largely missing.</td>
</tr>
</tbody>
</table>

Figure 3. Mechanical stratigraphy and qualitative strength profile of the three model layers and equivalent geologic units in Hebes Chasma. Figure 13 and Table 3 summarize Hebes geologic data.
Two other closely similar models tested the effects of specific variations. Model 2 differed from model 1 in having unit 3 below the mena. Model 3 differed from model 2 in having unit 3 across the entire model. Unless specifically referenced to the contrary, all model results refer to model 1.

Model Scaling

Table 2 shows the dynamic scaling of the model. Following Ramberg (1981), each model ratio is a model quantity divided by the equivalent quantity in nature. For example, the model’s length scale of 2 mm to 1 km is a model length ratio of 2×10^{-6}. This length scale fixes the scaled thickness of the three stratigraphic units in the model (Fig. 3). The model chasma was 60 cm long and 26 cm wide, equivalent to 300 x 130 km in Hebes Chasma. The chasma’s depth after deformation ranged from 14 mm to 24 mm, with an average of 16 mm. The upscaled equivalent of 16 mm is 8 km, which is the maximum depth of Hebes Chasma.

These length dimensions are simple to scale. All other properties include dimensions of mass and time, which are poorly known, so their scaling is more speculative. For example, what are the densities of the walls of Hebes Chasma and of the material inferred to have drained from the chasma? As shown in Table 2, a model ratio of density based on impure rock salt (2200 kg/m3) is 0.44; the density ratio for kieserite (2600 kg/m3), a denser hydrous salt, is only 0.37. The density ratio for a mixture of 70% tephra and 30% water ice is 0.72; for 70% tephra and 30% halite, the density ratio is 1.19. To scale strain, we wish to know what the deformed model would look like if it were geometrically scaled up to nature. The model ratio of strain is therefore 1 (Table 2). The model ratio for acceleration due to gravity is 2.6 because Mars has a smaller mass than Earth. For viscosity, we arbitrarily assume that the most mobile material in Hebes had the dynamic viscosity of rock salt, or ~1 x 10^{18} Pa s (van Keken et al., 1993). This viscosity model ratio yields model ratios of time and velocity from which we calculate that subsidence of a hypothetical scaled-up chasma in nature would have lasted 310 k.y. (Table 2). With the same model ratios of time and velocity, hypothetical scaled-up diapirs reached the surface after 130 k.y. Scaled up, the fastest viscous extrusions at surface would flow at 0.18 m/yr—a velocity about one-tenth the rate of the most active subaerial salt glaciers in Iran and one-tenth to one-hundredth the rate of nonsurfing ice glaciers (Talbot and Pohjola, 2009). These numbers are artificially precise because they are based on a particular assumed value of viscosity. Natural strain rates would scale 10 times slower for natural viscosities of 10^{20} Pa s and 10 times faster for 10^{10} Pa s. On Mars, the range of viscosity could be even larger than two magnitudes, given the uncertainties of Hebes lithology. For example, the viscosity of water ice varies between 10^{10} Pa s and 10^{14} Pa s, depending on grain size and temperature (Talbot and Pohjola, 2009). The viscosity of rock glaciers increases from these values as the content of rock fragments rises. Lithology also controls density, which affects the scaling ratios for stress, viscosity, time, and velocity. The scaling ratios in Table 2 are based on the density of halite because halite flows readily and because its mechanical properties are well known. If the buoyant unit 3 were instead equivalent to a tephra/salt/ice mixture, the results in nature would be difficult to predict because of complex interactions. For example, for a fixed viscosity, diapirs of tephra/salt would rise faster and flows would drain or spread more slowly than for halite. However,

Table 2. Scaling of Physical Models

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Model</th>
<th>Nature</th>
<th>Model ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, map view</td>
<td>$l = 2 \text{ mm}$</td>
<td>$l = 1 \text{ km}$</td>
<td>$l = 2 \times 10^{-6}$</td>
</tr>
<tr>
<td>Density, impure halite (unit 3)</td>
<td>$\rho_h = 970 \text{ kg m}^{-3}$</td>
<td>$\rho_h = 2200 \text{ kg m}^{-3}$</td>
<td>$\rho = 0.44$</td>
</tr>
<tr>
<td>Density, kieserite (unit 3)</td>
<td>$\rho_k = 970 \text{ kg m}^{-3}$</td>
<td>$\rho_k = 2600 \text{ kg m}^{-3}$</td>
<td>$\rho = 0.37$</td>
</tr>
<tr>
<td>Density, 70% tephra, 30% water ice (unit 3)</td>
<td>$\rho_t = 970 \text{ kg m}^{-3}$</td>
<td>$\rho_t = 1350 \text{ kg m}^{-3}$</td>
<td>$\rho = 0.72$</td>
</tr>
<tr>
<td>Density, 70% tephra, 30% halite (unit 3)</td>
<td>$\rho_h = 970 \text{ kg m}^{-3}$</td>
<td>$\rho_h = 1710 \text{ kg m}^{-3}$</td>
<td>$\rho = 0.57$</td>
</tr>
<tr>
<td>Density, overburden (unit 2)</td>
<td>$\rho_o = 1600 \text{ kg m}^{-3}$</td>
<td>$\rho_o = 3600 \text{ kg m}^{-3}$</td>
<td>$\rho = 0.44$</td>
</tr>
<tr>
<td>Gravity acceleration</td>
<td>$a_g = 9.8 \text{ m s}^{-2}$</td>
<td>$a_g = 3.7 \text{ m s}^{-2}$</td>
<td>$a = 2.6$</td>
</tr>
<tr>
<td>Strain</td>
<td>$\varepsilon = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress or strength</td>
<td>$\sigma = 2.5 \times 10^{5} \text{ Pa s}$</td>
<td>$\sigma = 1 \times 10^{10} \text{ Pa s}$</td>
<td>$\sigma = 2.5 \times 10^{14}$</td>
</tr>
<tr>
<td>Time, entire subsidence</td>
<td>$t = 30 \text{ h} = 1.1 \times 10^{4} \text{ s}$</td>
<td>$t = 310 \text{ k.y.}$</td>
<td>$t = 310 \text{ k.y.}$</td>
</tr>
<tr>
<td>Time, diapiric emergence</td>
<td>$t_e = 12.5 \text{ h} = 4.5 \times 10^{4} \text{ s}$</td>
<td>$t_e = 130 \text{ k.y.}$</td>
<td>$t_e = 130 \text{ k.y.}$</td>
</tr>
<tr>
<td>Velocity, surface flows</td>
<td>$v_s = 1 \times 10^{4} \text{ m s}^{-1}$</td>
<td>$v_s = 0.18 \text{ m yr}^{-1}$</td>
<td>$v_s = 0.18 \text{ m yr}^{-1}$</td>
</tr>
</tbody>
</table>

Note: Values in bold are known or assumed. Other values are calculated from model ratios shown.
a decrease of viscosity for a fixed density would accelerate both diapirism and subsidence in nature. The scaling values of Table 2 are therefore illustrative rather than predictive.

Model Data Capture

A laser scanner and optical cameras recorded the evolution of each model. Laser scanning mapped the model’s topography and tracked changes in relief on a submillimeter scale. Each laser scan produced more than 8 × 10⁶ points, which yielded high-resolution three-dimensional (3-D) surfaces. Computer-controlled cameras photographed the model surface in overhead and oblique views. Shot at set intervals, these images yielded a time-lapse animation of the model’s evolution (Fig. DR1).

All model photographs were lit from the north at oblique incidence, and all model figures are oriented with Hebes north at the top, located in Figure 5.

MODEL EVOLUTION

Stage 1: Sagging

The first signs of subsidence were swales, where the plains surface sagged gently outward below the extension of normal faults (Figs. 7A and 7B). As the swales sagged further, incipient grabens formed along their bounding hinges. These grabens acted as hinges that allowed the sides of the swales to sag inward and downward. Thrusts formed along the axis of each swale where opposed slabs met in a crease. Thus, inner contraction balanced the axis of each swale where opposed slabs met in a crease. Thrusts intensified, swales deepened, hinge grabens lengthened, and axial thrusts increased in slip (Fig. 7B).

Stage 2: Extension and Axial Thrusting

Widespread extension spread outward to the edge of the viscous unit 3 (Fig. 6C). In outer parts of the chasma, fault blocks tilted gently outward against the bounding normal faults (Figs. 7D and 7E). In inner parts of the chasma, hinge grabens widened, stretching the blue plains surface of unit 1. This extension exposed the underlying pale unit 2 in scarps slopes of tilted fault blocks (Figs. 7C and 7D). Below the thinned grabens, diapiric walls began to rise reactively but remained below the surface. Reactive diapirs rise where extension thins the overburden above a mobile layer (Vendeville and Jackson, 1992). Hinging on these grabens, slabs capped by the plains surface tilted steeply inward toward the zones of subsidence (Figs. 7B and 7C). Along the crease of these subsidence zones, thrusts intensified. At the head of the westernmost drainage trench, curved thrust traces radiated from the deepest point of the drainage trench (Fig. DR2E [see footnote 1]). The thrust pattern resembled a closing iris shutter in a camera as thrust plates overrode one another and converged on the drainage pit. Inward sliding resulted in constrictional crowding.

Between the pits and trenches, residual highs remained, the largest of which was the future mensa (Figs. 6B and 6C). Crests of these highs were stretched in patterns controlled by adjoining drainage pits and trenches. For example, equant highs formed radial grabens, whereas elongate highs formed parallel grabens (Fig. 6C).

Stage 3: Landsliding, Drainage, and Diapiric Emergence

Continued subsidence gradually destroyed the plains surface in the center of the chasma as extension, landslides, and drainage intensified (Figs. 6D and 8).

Extension on the upper sides of drainage pits and trenches created parallel relays of normal faults (Fig. 7B). These faults formed benches that stepped down from the plains surface into the chasma. Arcuate faults at the end of drainage trenches intersected as they lengthened, carving out small rhombic fault blocks as breached relay structures (Figs. 7C and 7D). As these rhombic fault blocks subsided inward, they left curved headwall scarps that linked as a chain of inward-facing alcoves along the rim of the growing chasma (Fig. 6D).

While slabs of units 1 and 2 tilted inward into drainage troughs, they continued to extend (Fig. DR2 [see footnote 1]). As fault traces migrated toward drainage troughs, extension widened the distance between the faults. New normal faults formed updip, while the oldest faults disappeared into the drainage crease. Axial thrusts also drained down pits and trenches, which gradually enlarged (Figs. 7C and 7D).

During this advanced extension, diapirs emerged after rising buoyantly because unit 3 had a density 61% of the overburden density. The extension pattern strongly controlled diapirism. Extensional thinning exposed first the underlying pale unit 2, and then ridges of unit 3 that had been rising as reactive diapiric walls until they surfaced (Figs. 7D and 7F).

Linear walls were the most common diapir, rising below the extensional hinges of inward-tilting slabs of units 1 and 2 (Fig. 8A). A chain of diapiric culminations formed along the upwelling walls wherever unit 3 rose fastest. Eventually, lower parts of the upwelling chain also breached the surface and joined into continuous, emergent walls (Fig. 8B).

Pluglike stocks were less common and formed in three settings. In the first, stocks emerged near the end of a broad extensional zone next to a drainage trough (Fig. DR2A [see footnote 1]). In a second setting, a broad dome remained as a residual high flanked by subsidence troughs (Fig. 9A). Radial-striking grabens unroofed the dome until unit 3 was exposed in patches (Figs. 9B–9D). Because the stock was sapped by surrounding drainage-crease trenches, it rose slowly and never fully emerged despite being large. In a third setting, a stock formed in a drainage pit (Fig. 10A). During an upwelling event, unit 3 welled up diapirically from the side of the drainage pit where the overburden had thinned (Fig. 10B). As the pit continued to drain, the stock sank from the floor of the pit along with landslides of the overburden (Figs. 10C and 10D). Appearance and disappearance of the diapir typified
Modeling collapse of Hebes Chasma, Mars

Drainage troughs acted like elongated sinkholes (Figs. 7 and 8). Some slabs remained cohesive even while they tilted steeply and gradually vanished down the drainage trough (Figs. 7C and 7D), but most tilted slabs of units 1 and 2 collapsed as particulate flows when shear stresses exceeded their shear strength (Fig. 7E). The excavated heads of the landslides further unroofed granular units 1 and 2. The landslides cascaded into trenches and covered older structures and stratigraphic layers. The landslides consisted of grains and rafts of reduced rhomboids. The result was a lumpy, chaotic topography (Figs. 7E and 7F). The pieces of units 1 and 2 cascaded down the sides of trenches and pits and disappeared. Arcuate normal faults curved around the upper ends of some drainage trenches as brittle units 1 and 2 continued to slide inward and extension spread outward (Fig. 7E).

In the outer parts of the chasma, the plains surface remained mostly intact, though downfaulted and tilted inward and outward (Fig. 6D).

Stage 4: Allochthonous Flow

As subsidence culminated, it transformed the inner part of the chasma (Figs. 11A and 11B). Landslides unroofed unit 2 and began to expose previously buried viscous diapirs that had risen from unit 3. Once exposed, diapirs extruded down the flanks of the drainage pits and trenches. These viscous allochthonous flows covered the terrain of chaotic landslides. Entrained within the viscous extrusions or carried above them, particle clumps of units 1 and 2 stretched into downslope-oriented streaks (Fig. 8A). Flows down opposite flanks of trenches approached, met, and sutured in the depths of some trenches. Linear sutures formed within linear trenches (Fig. 8B), whereas triple-point sutures formed where three trenches met (Fig. 9D).

Final Structural Zonation

Advanced subsidence in the model produced brittle and ductile structures in widely different states of strain. Broadly, subsidence increased from the outer rim inward to the nearest trench. Structures can be grouped into three zones, each having a different mix of structures that excavated the model chasma (Figs. 11B and 6D).

An outer zone had a structural fabric parallel to the chasma rim. Concentric extensional
faults suggest a response to inward viscous flow at depth (Fig. 7). Normal faults formed by brittle extension of units 1 and 2 accompanied inward viscous flow of unit 3 in the subsurface. Surface structures in the outer zone included normal faults along the rims, fault-controlled headscars embaying the rim to form alcoves, fault-bounded benches, inward- and outward-tilted slabs of plains material, and slump-block terraces (Figs. 6D, 7E, and 8A).

An inner zone having fabrics oriented down-dip into the axial trenches and pits was dominated by inward and downward viscous flow at depth. Granular flows (landslides) and viscous flows (extrusions) stretched and aligned centripetal, flow-parallel streaks (Figs. 8 and 9). The fabric was one of extreme downslope extension parallel to the major principal axis of strain and extreme vertical shortening parallel to the minor axis, shaped like a flattened cigar. Surface structures in the inner zone included

Figure 7. Surface structural evolution of the east end of model 1 during progressive collapse, illustrated by oblique photographs lit from the north; Figure 5 shows the location. (A–B) Stage 1 subsidence in the form of sagging. (C–E) Stages 2–4 of model subsidence, in which slabs subsided, broke apart, and disappeared, followed by allochthonous flow and diapir emergence. (F) Cross sections of the stages shown in B and C, based on surface structures and stratigraphic data. Key structures: 1—swale; 2—hinge graben; 3—axial thrust; 7—outward-tilted extensional fault block; 8—inward-tilted slab of unit 1; 9—extensional fault scarp exposing unit 2; 10—subsurface reactive diapir; 12—drainage trench; 16—downfaulted plains surface; 17—extensional terraces; 18—extensional rhombs; 20—arcuate extensional fault; 21—exposed diapiric wall; 22—exposed diapiric stock; 26—chaotic landslide terrain.
allochthonous viscous flows, trails of cohesive fragments parallel to flow, streaks of smaller clumps and entrained grains, and steep-sided drainage pits and trenches (Figs. 6D, 7E, 8A, 9, and 10).

A transitional zone acted as a broad hinge between the outer and inner structural zones, containing a concentric fabric parallel to the chasma rim (Fig. 11B). Extension was more advanced than in the outer zone. This zone includes the central mensa, which was degraded by extension on all sides and structurally unroofed. Surface structures in the transitional zone were fault-bounded benches, stretched inward-tilted slabs of plains material, fault lozenges, and reactive diapiric walls (Figs. 6D, 7E, 8, 9, and 10).

All three stratigraphic units deformed and moved inward toward the drainage pits and trenches in patterns depending on the location of the nearest pit or trench. Some structures migrated through more than one structural zone as subsidence progressed.

Diapirism and Extension in Hebes Mensa

In model 1, the equivalent to Hebes Mensa was a residual horst, which remained high as its surroundings subsided. The result was a flat plateau flanked by grabens (Fig. 12A). The mensa could not rise because it rested on rigid basement. In contrast, the mensa in model 2 was underlain by buoyant mobile unit 3. As a result, the core of the mensa rose diapirically. At the same time, extension thinned the mensa’s roof, compensating for diapiric rise. Accordingly, the summit of the mensa remained just below the chasma rim, as seen in Hebes Mensa. The two profiles in Figures 12A and 12B show the difference between (1) pure extension in model 1, where a flat mensa crest is level with the plains, and (2) a mixture of diapirism and extension in model 2, where the arched mensa crest is slightly below plains level.

At the stage shown in Figure 12B, the diapir was still deep below its arched roof. After more chasma subsidence however, the mensa diapir continued to rise reactively and eventually emerged at the summit of the mensa (Fig. 12C).

GEOLOGY OF HEBES CHASMA

Introduction and Geologic Map

We analyzed the models while studying images of Hebes Chasma and preparing a geologic-geomorphic map built on the rich reservoir of images and measurements of Mars acquired by spacecraft over decades. Figure 13 is a composite of our more detailed maps. Unlike geologic mapping on Earth, where ground can be directly examined, remote mapping of planets must be based mainly on interpretation of landforms, roughness, albedo, and spectral reflectance. In keeping with the established practice of interpreting planetary geology from remote measurements, our “geologic” map includes geomorphic units such as surfaces and benches. Table 3 describes and interprets the map units, which are modified from Adams et

Figure 8. (A–B) Surface structural evolution of the east end of model 1 during stages 2–4 of model subsidence in which diapiric walls emerged, extruded, and sutured their allochthonous flows in drainage troughs. (C) Cross sections of the stages shown in A and B, based on surface structures and stratigraphic data. Overhead photographs are lit from the top; Figure 5 shows the location. Key structures: 1—swale; 9—extensional fault scarp exposing unit 2; 10—subsurface reactive diapir; 12—drainage trench; 16—downfaulted plains surface; 17—extensional terraces; 21—exposed diapiric wall; 23—unit 2 exposed in landslide; 24—rafted fragment of extensional lozenge; 25—inward allochthonous flow; 26—chaotic landslide terrain; 27a—linear suture; 27b—triple-point suture; 28—slump off rim.
A valuable marker for interpreting structures of the chasma walls was the base of the Upper Hebes Formation, which forms an uneven contact with the Lower Hebes Formation (Fig. 13). The Upper Hebes Formation probably formed diagenetically by cementation of preexisting materials of various ages to a depth of 600–800 m below the plains surface (Treiman et al., 1995; Adams et al., 2009). A diagenetic origin is not consistent with flood-basalt flows (McEwen et al., 1999). The resistant outcrops of the Upper Hebes Formation at various levels within the chasma dropped from near the original plains surface during subsidence.

Initial Subsidence (Stage 1): Sagging, Minor Extension, and Thrusting

At the eastern end of Hebes Chasma, there is a gentle sag of the plains surface called the “Swale” by Adams et al. (2009) (Figs. 1B and 15). The Swale is 18 km long, 10 km wide, and up to 750 m deep. Inward-tilted slabs hinge on a rim of grabens, and the deep axis of the sag is ridged. The Swale aligns with the axis of Hebes and with Ganges Catena, a chain of pits and troughs 148 km farther east (Fig. 1A). The Hebes-Ganges linearity and alignment suggest control by a regional fracture zone.

Adams et al. (2009) proposed that the Swale records an immature stage of subsidence as the chasma propagated eastward. Similar structures formed in model stage 1 (Figs. 6A, 7A, and 7B), but they were destroyed as subsidence continued. Preservation of the Hebes Swale therefore suggests that further subsidence stopped there. In the models, peripheral shallow grabens formed at the hinge of the inward-tilted plains surface, and inward-moving slabs overrode one another as thrust faults as they converged along the axis. The models support the interpretation that wrinkle ridges in the Hebes Swale are the surface expression of folds above blind thrust faults. This axial shortening in the model balances extension in the margins. Radial wrinkle ridges at the end of the Hebes Swale show that slabs converged by sliding radially inward (Fig. 15).

Extensional Collapse (Stages 2 and 3): Bench Subsidence, Inward Tilting, and Landsliding

Extensional Benches

As in the model, extension along the margins of Hebes Chasma formed gently sloping (<10°) fault-bounded benches that tilt both inward and outward. At the east end of the chasma, the inner...
edges of the benches expose the same layered unit (Upper Hebes Formation) that forms the rimrock on the walls above, showing that the plains surface was down-faulted (Fig. DR3 [see footnote 1]). In Hebes cross sections, eroded bedrock and talus can be balanced only if faults defining the benches dip inward.

Extensional faulting also produced an isolated 17-km-wide bench of the Upper Hebes Formation on the north wall called “Big Slab” (Adams et al., 2009) (Fig. 16A). This slab has two pieces: an upper, narrow bench dipping 1° outward and a larger, lower bench dipping 9°–10° inward. The toe of the lower bench has transverse (strike-parallel) shallow grabens and ends in a fault scarp above the North Pit, which resembles scarps exposing layered Upper Hebes Formation at the edges of benches above the East Pit.

About half the chasma walls consist of fault blocks tilted at 15°–25° and carved into the ridges and gullies characteristic of the LHFS (Lower Hebes Formation incised by gullies) (Fig. 16A). Pervasive strike-parallel faulting of these blocks shattered the plains surface and the resistant Upper Hebes Formation cap. Faulting exposed the more readily eroded Lower Hebes Formation in gullies and left scattered remnants of basal Upper Hebes Formation on ridges and on some block edges where dips are at angles close to the slopes of the walls. The ridge-and-gully blocks differ from the benches in lacking prominent headwall fault scarps.

The models produced similar inward-tilting wall blocks without headwalls (Figs. 7B–7D) when deep subsidence removed support. Slabs in the models formed early, but the walls faulted pervasively only after advanced tilting and breakup of the surface layer (Figs. 7, 8, and 10). Steep slabs were then engulfed whole or fragmented in drainage troughs. Because the models did not include surficial erosion, they did not produce incised landforms similar to the gullied topography of the LHF in Hebes.

A tilted fault block of wall material, here named “Island Block,” projects from the eastern floor of the chasma (Fig. 16B). The north side of Island Block is an ~25° dip slope of lower Upper Hebes Formation strata. The block’s southern scarp slope exposes the lower third of Upper Hebes Formation and some Lower Hebes Formation below. The northward tilt of Island Block and the trench between it and the south wall of the chasma are consistent with extension caused by subsurface removal of material along the chasma’s axis (Fig. 16B). Similar tilted and rafted blocks appear at various stages in the models (Fig. 7). We interpret the low hills at the northern base of Island Block as a landslide of delaminated upper Upper Hebes Formation, which slid down the crest of the block. On Island Block and on the ridge-and-gully (LHF) chasma walls, the upper part of the Upper Hebes Formation fell apart on slopes steeper than 20°. In contrast, Upper Hebes Formation on the benches, which slope at less than 10°, remained largely intact, although it is possible that the southern flank of Big Slab (9°–10° dip) also delaminated. So when Hebes Chasma formed, the Upper Hebes Formation may have been less cohesive than its counterpart in the models.

A spectacular terrestrial analog for pervasive faulting and inward tilting caused by subsidence is the collapse of the Vatnajökull ice cap in Iceland during a 2 wk subglacial eruption in 1996 (Gudmundsson et al., 1997). Eruption from a fissure connecting two volcanoes melted 3 km³ of ice, which ponded in a subglacial lake before bursting out as a jökulhlaup flood. After meltwater escaped, the overlying ice collapsed to form intensely crevassed ice cauldrons that rapidly deepened to several hundred meters and widened extensively to several kilometers (Fig. 17A).

Bench Disaggregation and Landsliding

The west wall of the chasma has narrow fault benches just below the rim and normal faults at the headwall that extend into the plains surface as shallow grabens (Fig. DR4 [see footnote 1]). These arcuate grabens subparallel to the headwall may be influenced by larger fault sets (Echus Fossae or Tithoniae Fossae), or they may be cross faults orthogonal to the main border faults (Wilkins and Schultz, 2003), but they certainly controlled collapse of the chasma’s blunt west wall. Below the fault benches, the chasma’s western wall consists of a chaotic block (mapped as LHF, slumped Lower Hebes Formation) in Fig. 13) different from the ridge-and-gully topography. Resistant remnants of the lower part of the Upper Hebes Formation protect ridges within the LHF, and the apparent dip of these remnants steepens downslope into the West Pit. Along its southern boundary, material of the chaotic block overlies ridges and gullies of the adjacent wall (Fig. 13). Along its northern boundary, the block coincides with a change in direction of a major gully. The chaotic topography of the block suggests massive landslides into the subsiding West Pit.

A terrestrial example of foundering extensional fault blocks that broke apart during subsidence is the sink holes produced by dissolution of underlying salt along the margin of the Dead Sea, Israel (Fig. 17B). Detached fault
blocks dip both inward and outward on extensive fault surfaces. The deepest fault blocks sank into salty mud as they broke apart to form a chaotic terrain of irregular foundered blocks.

Diapiric Emergence (Stages 2 and 3)

The most readily recognized diapirs are pale mounds that project upward through younger deposits in the floor of Hebes Chasma (Fig. 18). One of the largest exposed diapirs is Mini-Mensa, an 8-km-long oval mound east of Hebes Mensa (Fig. 19A). The pale crest and upper flanks of Mini-Mensa are highly fractured. At lower elevations, outward-dipping layers of the LHFL (layered Lower Hebes Formation), interpreted by the Rule of V, define an antiform. This collar of upturned layers is distinctive of active salt diapirs on Earth (Fig. 19B). The domal structure of Mini-Mensa and of its equivalent in the model implies that as the surrounding troughs sank, Mini-Mensa rose diapirically because its roof thinned as material slid or flowed into the surrounding troughs and pits.

A smaller, but even more prominent, diapiric mound projects from the floor of the North Pit northwest of Hebes Mensa (Figs. 18 and 20A). This pale hill shaped like a tear drop is fluted and faceted by wind erosion. A flap next to its east flank tilts gently away from the diapir, as around Mini-Mensa and terrestrial active diapirs (Fig. 19B). Mounds form low conical or rounded hills elsewhere in the North Pit and in the Southeast Pit (Fig. 18), and many of them are within a region of the North Pit having the spectra of kieserite (Adams et al., 2009). Wrinkled mounds are present on the floor of the graben south of Island Block (Fig. 16B). We interpret the mounds as viscous extrusions of the Lower Hebes Formation from reactive diapirs triggered by graben opening, similar to reactive upwelling of unit 3 in grabens in the model (Fig. 8A).

The competition between gravity-driven rise (diapirism) and gravity-driven fall (subsidence) in the model highlights two lessons. First, underlying flows can carry a diapir laterally into a drainage trough (Fig. DR2, diapir 22 [see footnote 1]), where the diapir sutures with other diapirs before draining away. Second, a diapir can appear and disappear in the same place. A diapir rose in a drainage pit where the overburden was thinnest (Figs. 10A and 10B), and then sank out of sight as the pit continued to drain (Figs. 10C and 10D). Some diapirs that rose while Hebes Chasma subsided might therefore have drained away later—another reminder that the present-day structure is an incomplete picture.

Like many salt diapirs exposed subaerially on Earth, the Hebes mounds have an outer margin that is smooth and oval, a profile that is smooth...
and rounded, and a texture that is scaly or lumpy like cauliflower (Figs. 19B and 20A). After rising to the surface, terrestrial salt diapirs degrade by erosion and dissolution. As a result, to remain as a hill, they must continue to rise (Fig. 19B). Their relief signifies ongoing rise on Earth but need not on a Mars, where erosion is far slower. The cauliflower texture of subaerial terrestrial diapirs (Fig. 19B) forms as halite dissolves, leaving a mantle of gypsum-rich soil created by hydration of anhydrite grains in the halite host rock (Jackson et al., 1990; Bruthans et al., 2008). In contrast to the cauliflower texture, the shaggy textures on the lower slopes of Hebes Mensa resemble the jagged weathering of anhydrite diapirs in an arid polar climate etched by dissolution and wind (Fig. DR5 [see footnote 1]; Harrison and Jackson, 2008). Although halite is the most common mineral in terrestrial salt bodies, other salts having different properties are known on Mars. Potash salts are even weaker than halite, and some salts, such as epsomite, are even less dense than halite. There are few clues to the composition of the allochthonous flows in Hebes Chasma. Accordingly, our analogies of Hebes landforms with halite salt structures on Earth are only meant to draw parallels with their geomorphology and distinctive deformation style, without implying that the Hebes diapirs and flows consist mostly of halite.

Allochthonous Flows (Stages 3 and 4)

Some features mapped in Figure 18 have been interpreted by others as landslides (e.g., Witbeck et al., 1991). Landslides have undoubtedly occurred, but we interpret most of the largest features as allochthonous flows on the basis of evidence summarized in a later section, “Landslides, Magma, Ice.”

Deep-Sourced Flows Associated with Collapse

The largest flows in Hebes Chasma, here referred to as the Great Flows, emerged from the chasma walls (Figs. 1B and 18). These are the North Flow (50 km long), the Northeast Flow (70 km long), and the Tongue (45 km long) (Adams et al., 2009). All flowed toward the deepest depressions in the floor.

The Tongue follows the axis of the east-end trough and slopes at ~4° westward to the East Pit (Figs. 18 and 21). The Tongue is bounded by fault scarps to the north and south and is broken by transverse scarps. The gradual transition of the east benches (WB) into the upper part of the Tongue, and the absence of a single, prominent headwall detachment zone suggest that the flow consists largely of the Lower Hebes Formation. This interpretation is consistent with the physical models in which deep material emerged at the surface along both sides of the east trough and began to flow along the chasma axis (Fig. 8).

The first sign of breakout of an allochthonous flow is bulbous mounds near the base of the chasma walls (Fig. 22B). The mounds either never fully emerged or oozed only a few kilometers over older flows, before stiffening, and
Figure 13. Geologic map of Hebes Chasma produced by photogeologic interpretation. Table 3 provides a detailed legend.
becoming immobile. In the area shown in Figure 22B, three discrete flows overlie older flows, impinging to produce several generations of refolded folds. The Great Flows are composites of smaller flows, many of which merged laterally (Fig. 18) and even sutured head to head, as in the model (Fig. 8B).

Morphologies of the termini of the small flows in the chasma provide further clues to flow mechanics. Some small flows end in a lobate escarpment, suggesting that viscosity increased and immobilized flow, perhaps by cooling or loss of pore fluids. Others end as a thinning wedge, like an ice glacier abating or a salt glacier dissolving. More rarely, snouts end in a moat, as if the end of the flow had melted, ablated, or dissolved.

We interpret the Great Flows as a fundamental part of Hebes collapse, as in the physical models where subsidence and breakaway sliding of rafted fault blocks progressively sapped the chasma wall and exposed its mobile depths. In the models, flows consisted of the two deeper units with entrained pieces of the youngest unit. We infer that the three Great Flows also originated at depth and consist chiefly of the allochthonous Lower Hebes Formation with entrained Upper Hebes Formation relics.

Several features suggest that material began flowing at depth before emerging as lateral extrusions (Fig. 22). First, there is no bergschrund or other breakaway gap, which results when a glacial flow separates from a fixed uphill boundary such as a cliff. Second, the bulging mounds along the base of the headscars of the Great Flows suggest that flows welled up from depth without signs of dribbling from above. Third, some flows appear to have emerged from the base of the chasma walls fully formed because their flow-parallel striae suggest viscous longitudinal extension (Fig. 22B). These striae could result from elongation of inclusions by subsurface flow or from shredding of the foot of the talus apron by traction of underlying flow. Surfaces of flows commonly have a

TABLE 3. DESCRIPTIVE LEGEND FOR GEOLOGIC MAP UNITS OF HEBES CHASMA

<table>
<thead>
<tr>
<th>Major units</th>
<th>Minor units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plains</td>
<td>PS Plains surface</td>
</tr>
<tr>
<td>Hebes Group: Upper Hebes Formation</td>
<td>UHF Upper Hebes Formation</td>
</tr>
<tr>
<td>PS Plains surface</td>
<td>Description. Part of the Hesperian-age plateau of the Valles Marineris region (McEwen et al., 1999). PS is an extensive geomorphic surface defining the top of the Upper Hebes Formation.</td>
</tr>
<tr>
<td>UHF Upper Hebes Formation</td>
<td>Description. Layered, resistant unit rimming the chasma, edges of benches in chasma walls, tilted blocks in the east floor of the chasma, and ridges of LHF. On the chasma rim, the plains surface (PS) caps the UHF; the base of UHF grades into underlying softer, massive (nonlayered or cryptically layered) LHF, and LHF. Layers in UHF vary in resistance, albedo, and thickness (<5 to 100 m). The UHF unit is 500–800 m thick, but its base is uneven and, in places, poorly defined.</td>
</tr>
<tr>
<td>PS Plains surface</td>
<td>Interpretation. Diagonetically formed cap locally discordant to underlying strata (Treiman et al., 1995; Adams et al., 2009). UHF is cemented and altered LHF. Outcrops of UHF below the chasma rim are remnants of the rim displaced by faulting, tilting, and sliding.</td>
</tr>
<tr>
<td>WB Wall benches</td>
<td>Description. WB is present at the east end of the chasma between outcropping WB and HG. Surfaces of WB show flow lobes, coarse ropy wrinkles, fine wrinkles, longitudinal flow ridges, and large hummocks. WB has sparser impact craters than does WB. In the east, lobate flows of WB overlie WB. Mobile HG intruded a bench of WB below the northeast wall. Layers of UHF crop out on the edges of WB benches on the northeast wall and south wall; the northward-dipping Island Block of UHF lies within WB near the southeast wall.</td>
</tr>
<tr>
<td>WB Wall benches</td>
<td>Interpretation. WB is transitional between WB to HG. Delamination, disaggregation, and softening mobilized UHF. Island Block is a UHF relic tilted and rafted northward by mobile LHF subsiding into the eastern axial zone of the chasma. The trough south of Island Block is a graben in which WB was mobilized to form hummocky WB.</td>
</tr>
<tr>
<td>LHFI Lower Hebes Formation, talus</td>
<td>LHF Hebes Formation, talus</td>
</tr>
<tr>
<td>LHFI Lower Hebes Formation, talus</td>
<td>Description. Exposed in fault scarp along the chasma walls below outcrops of UHF. HF forms streaks and narrow fans on slopes of 20°–30°. Minimal deposits accumulated at the bases of talus slopes. Talus aprons are uninterrupted by ledges or layers.</td>
</tr>
<tr>
<td>LHF Hebes Formation, talus</td>
<td>Interpretation. HF consists of noncohesive particles derived by mass wasting of nonlayered (or cryptically layered), relatively soft LHF and disaggregated UHF.</td>
</tr>
<tr>
<td>LHF Hebes Formation, talus</td>
<td>Description. Chasma walls consisting mostly of nonlayered or cryptically layered Lower Hebes Formation eroded into ridges and gullies. UHF forms the chasma rim at the top of LHF, and remnants of UHF cap ridges within LHF, even in lowest parts of chasma walls. In the south, canyons incised into plains surface (PS) continue across LHF, as gullies down to the chasma floor. Most debris removed from plains canyons and from gullies is not present on the chasma floor.</td>
</tr>
<tr>
<td>LHF Hebes Formation, talus</td>
<td>Interpretation. LHF is the upper part of LHF exposed where overlying UHF was breached. LHF was displaced inward along the chasma walls by normal faulting during subsidence.</td>
</tr>
<tr>
<td>LHF Hebes Formation, talus</td>
<td>LHF Low Hebes Formation, slump</td>
</tr>
<tr>
<td>LHF Low Hebes Formation, slump</td>
<td>Description. LHF on the west wall of the chasma is separated from UHF and HF on the rim by normal faults. LHF has transverse ridges and gullies and consists of fault blocks of LHF capped by remnants of UHF. LHF extends downslope to the West Pit without its toe thickening on the chasma floor.</td>
</tr>
<tr>
<td>LHF Low Hebes Formation, slump</td>
<td>Interpretation. LHF is a slump caused by collapse of UHF and LHF in the west wall into the West Pit. Crowding within the slump caused it to laterally override ridges and gullies to north and south. Debris drained from the slump's toe into the West Pit.</td>
</tr>
<tr>
<td>LHF Low Hebes Formation, talus</td>
<td>LHF Low Hebes Formation, talus</td>
</tr>
<tr>
<td>LHF Low Hebes Formation, talus</td>
<td>Description. Discontinuous layered deposit (about 100 m thick) containing botryoidal structures. Caps Hebes Mensa and occurs locally near the top of Mini-Mensa (latter outcrops are too small to show on the geologic map).</td>
</tr>
<tr>
<td>LHF Low Hebes Formation, talus</td>
<td>Interpretation. LHF is finelayered, generally pale, locally contorted and fragmented at kilometer scale. LHF underlies LHF on Hebes Mensa and Mini-Mensa. On both mensae, layering defines a gentle antiform. Below Mini-Mensa, LHF crops out in the Southeast Pit. Kieserite has been measured spectroscopically in layered deposits of the Southeast Pit (Gendrin et al., 2005; Adams et al., 2009). LHF is layered equivalents of the lower part of LHF in chasma walls. Botryoidal structures of LHF are kilometer-scale nested diapirs or fluid-escape cells of eruptive spring deposits. Layering in LHF may be depositional or may result from shear and flow segregation. LHF and LHF rose to their present positions on Hebes Mensa and Mini-Mensa by diapiric uplift.</td>
</tr>
</tbody>
</table>

(Continued)
network of fine cracks, suggesting a thin crust that became brittle.

Allochthonous salt sheets are the broadest salt structures on Earth. Fed by salt diapirs, salt sheets up to 6 km thick can merge into salt canopies hundreds of kilometers wide. These allochthonous flows extrude at the surface or overthrust sediments around them when buried (Worrall and Snelson, 1989; Jackson et al., 1990; Diegel et al., 1995; Talbot, 1998; Hudec and Jackson, 2006, 2009; Talbot and Poljola, 2009). Even where terrestrial allochthonous flows are young landforms, they consist of salt much older than the sediments beneath them. Likewise, the Hebes flows originated from depth and then extruded across the Hebes floor over younger deposits.

Two terrestrial examples are especially relevant for Hebes. An analog for allochthonous

![Figure 14. Nadir view of Hebes Chasma showing the location of illustrations. Visible mosaic is from Mars Express High Resolution Stereo Camera.](image-url)
flows breaking out at the base of a slope is the Garmsar salt nappe in northern Iran (Schléder and Urai, 2007; Baikpour et al., 2010). This Eocene salt emerged from beneath torn Miocene roof flaps at the base of the Alborz mountain range and extruded southwestward 19 km over Pleistocene alluvial fans (Fig. 22C). An analog for allochthonous flow of salt down extensional fault terraces is the Red Sea, where flows of Miocene salt cascade toward the depths of an oceanic trough (Mitchell et al., 2010). Terrestrial salt glaciers originally consist mostly of halite, but dissolution gradually increases their proportion of less soluble evaporites and nonevaporite inclusions (Kent, 1979; Bruthans et al., 2009).

Shallow-Sourced Flows Associated with Unroofing

Pale flows originate from layers high in the sides of Hebes Mensa; the longest shallow-sourced mensa flow is 23 km. On the northwest shoulder of the mensa, two adjoining mensa

Figure 15. The Swale at the east end of Hebes Chasma. (A) Oblique view to the northwest (no vertical exaggeration). Mars Express High Resolution Stereo Camera. (B) Nadir view with spot heights showing the ~600 m relief of the sag between bounding fossae. *Mars Odyssey* Mission, THEMIS V18276001. Figure 14 shows location.

Figure 16. (A) Big Slab in the north wall of Hebes Chasma in an oblique view to the northwest. Eye altitude is 11 km; ~2× vertical exaggeration. Image via Google Earth from NASA/USGS/ESA/DLR/FU Berlin (G. Neukum). (B) Island Block near the southeast wall of Hebes Chasma in an oblique view to the east. Eye altitude is 22 km; ~2× vertical exaggeration. Image via Google Earth from NASA/USGS and ESA/DLR/FU Berlin (G. Neukum). Figure 14 shows locations.
flows, the Northwest Flows, emerged from the mensa’s anticlinal hinge and flowed down the mensa slope into the West Pit (Figs. 18, 20A, and 20B). Continuous layering connects the pale, bedded source of LHFB high on the mensa shoulder with its streaked-out equivalents downstream in the flows. The lower part of the mensa flows has arcuate transverse ridges suggesting longitudinal shortening. The upper part has grooves and streaks parallel to flow suggesting longitudinal extension. Because no headwall or extensional breakaway exists at the head of the flows, they are not landslides.

At least 18 smaller mensa flows emerged from the northeast and southwest slopes of Hebes Mensa and flowed for 4–9 km (Figs. 18 and 20C). Their features are typical of flows: arcuate transverse ridges, longitudinal banding, lobate thickened snouts, and an allochthonous position over younger stratigraphy. The northeast mensa flows off the mensa are narrow,
fingerlike ridges that project into the dark, smooth deposits flooring the chasma. In addition, many of the pale, fingerlike ridges at the north foot of the mensa resemble less-mature mensa flows. The southwest pale mensa flows also originate in the layered slopes of the mensa but consist of smaller flows that coalesced into canopies. The southwest mensa flows spilled across the trough and reached the south wall of the chasma, where they locally penetrated the mouths of the large gullies of the LHFI in the walls (Fig. 18).

We infer that unroofing of Hebes Mensa triggered flows off its flanks. Unroofing removed lateral support from the LHFI layer and other mobile units, so they oozed downhill across an erosion surface. These mensa flows were thought to be igneous by Lucchitta and Chapman (2002), but if so, it is unclear what made them hot and mobile after the mensa flanks were exposed by erosion. These small mensa flows provide striking evidence of mobility but are merely surficial decorations to the landscape, unlike the Great Flows.

Drainage (Stages 3 and 4)

Two plains canyons descend into the chasma from the southwest rim (Figs. 1B and 11C), but Hebes lacks surface outlet channels. The plains canyons and the gullies on the chasma walls (LHFI) lack inner channels, and they end at or above the chasma floor without accumulated deposits. Within the chasma, the only channels are minor features that drained dark smooth deposits from the flanks of Hebes Mensa. Allochthonous flows from the bases of the chasma walls and from the mensa did not carve channels. However, all these flows end in closed pits or troughs in the chasma floor without accumulation, showing that the depressions acted as drains that governed directions of incoming flow. Even the Great Flows taper gently into pits, without the terminal ridge common in terrestrial landslides and rock glaciers (although many retreating terrestrial glaciers ablate to a tapering snout).

The drains are part of the complex topography of the chasma floor (Fig. 18). For example, the East Pit is a 30-km-wide closed sink, 8 km below the chasma rim. Within the pit, a 13-km-long crease mantled by dark material marks where the Tongue and the Northeast Flow meet (Fig. 21). We infer that the crease is the final surface expression of the main drain for the two Great Flows.

Layered rocks similar to those on the upper slopes of Hebes Mensa and Mini-Mensa (LHFI) are exposed in the walls of the Southeast Pit (Figs. 1B and 11), which is the only pit that the youngest flows did not reach. Hebes Mensa forms the west wall of the pit, and Mini-Mensa forms the north wall. Unroofing of the mensae shed material into the Southeast Pit, but the Great Flows and flows in the South Basin apparently were largely blocked by topographic sills. If the Southeast Pit drained material faster than it was being supplied, erosion of the pit walls may have exposed the lower part of the Lower Hebes Formation. The models show many examples in which lower layers are unroofed in the walls of collapse pits.

The chasma floors to the north and south of Hebes Mensa (North Pit and South Basin; Figs. 1B and 18) appear different but are similar structurally. The North Pit was filled by pale diapiric flows from the base of the north wall of the chasma and by pale flows from Hebes Mensa (Fig. 23). These opposing flows end along a sinuous line that must have been a topographically low drain in the North Pit.

The South Basin received diapiric flows from the base of the mensa and from the base of the south-chasma wall. Minor pale flows from the upper wall of the mensa interfinger with and

Figure 19. (A) Mini-Mensa, an inferred emergent diapir in Hebes Chasma. Figure 14 shows location. (B) Jahangir Khan diapir composed of Upper Jurassic salt in the North Kerman (Ravar) Basin, Iran. Diapir is 1.2 km long and 0.9 km wide. View is to southeast; eye altitude is 2.2 km; no vertical exaggeration. Image via Google Earth from CNES/Spot Image and DigitalGlobe.
overlie the darker flows (Fig. 20C). The present basin floor is lumpy with many small closed depressions. However, the South Basin is overall a shallow trough along which flows from opposing sides converged, suggesting that subsidence was concentrated along its axis, like the axial creases in the models (Figs. 7C, 8C, and 8D).

The West Pit is the deepest part of an arcuate trench around the west end of Hebes Mensa (Figs. 1 and 18), completing the mensa’s encirclement by closed depressions. The floor of the trench and West Pit is covered by flows off the mensa. These flows are over lain partly by a mound of dark smooth deposits sourced from the west flank of the mensa (Fig. 13). The chaotic slump on the west wall of the chasma (LHFs) did not leave deposits on the floor of the West Pit, implying that the west wall collapsed into the pit before flows oozed off Hebes Mensa.

The model suggests how the drains may have evolved. Deep drainage was first expressed at the surface as gentle sags and then as slabs tilting and sliding inward away from extensional hinges (Figs. 6 and 7). Where slabs sliding from opposite sides met in a crease, they overrode one another in sharply defined pits and troughs. As soon as material at the surface—rather than at depth—began to drain as particulate flows, the troughs and pits widened, merged, and softened in outline. Their sides sloped inward to their deepest points. The model trenches are analogous to the valleys on the north and south sides of Hebes Mensa. The large East Pit has gently sloping sides as in the model, consistent with flow of the Lower Hebes Formation at depth toward the pit and with continued postflow subsidence. Walls of some pits contain gentle bulges, suggesting diapiric upwelling just below the surface, as in the model (Fig. 10).

Figure 20. (A–B) Shallow-sourced flows (numbered) off the northwest shoulder of Hebes Mensa. (A) Vertical view from Mars Express High Resolution Stereo Camera. (B) Oblique view looking south of the area in A, showing the two numbered flows. Eye altitude is 4.8 km; ~2× vertical exaggeration. Image via Google Earth from ESA/ DLR/FU Berlin (G. Neukum). (C) Oblique view to the north of shallow-sourced flows from the south flank of Hebes Mensa. Eye altitude is 9 km; ~2× vertical exaggeration. Image via Google Earth from ESA/DLR/FU Berlin (G. Neukum) and NASA/USGS. Figure 14 shows locations.
Formation of Hebes Mensa (Stages 3 and 4)

Hebes Mensa presents a puzzle as to the age of its units and where they belong in a stratigraphic sequence. The 109-km-long mensa rises 8 km from the chasma floor to within a few hundred meters of the chasma rim. The north and west flanks of the mensa have clearly defined layers (Figs. 23 and 24). Similar layers are present on the sides of Mini-Mensa and in the Southeast Pit (Hauber et al., 2008), but they are not present, or at least recognizable, in the chasma walls below the Upper Hebes Formation. Some researchers have concluded that Hebes Mensa consists of interior layered deposits (ILDs) laid down after the chasma formed (e.g., Witbeck et al., 1991; Lucchitta et al., 1992; Le Deit et al., 2008). However, this explanation seems implausibly elaborate for the closed basin of Hebes, because regardless of how the chasma itself formed (Table 1), if the mensa layers filled a preexisting chasma, then there must have been a second (undocumented) episode of chasma excavation.
Figure 23. (A) Deep-sourced flows from the north wall of Hebes Chasma into the North Pit. The terminus of the flows (solid line) is inferred to mark the former drainage axis; the present-day trench (dashed line) is inferred to mark the final drainage axis. Oblique view to the west; eye altitude is 8.5 km; 2x vertical exaggeration. HRSC image via Google Earth from NASA/USGS and ESA/DLR/FU Berlin (G. Neukum).

(B) Vertical view of the westernmost deep-sourced flow, marked b in part A, showing inferred streamlines (black arrows) from source of flow in north wall of chasma. The later rise of an inferred diapir upturned an outward-dipping flap in the deep-sourced flow on the diapir’s eastern flank. The shallow-sourced Northwest Flow overran the deep-sourced flow, which was originally from the north but today slopes at 6°–10° to the north. Figure 14 shows locations.

Figure 24. The east end of Hebes Mensa in an oblique view to the southwest. The sidewalls of a rectangular slump expose the northward-dipping limb of the anticline forming the mensa. Eye altitude is 15 km; 2x vertical exaggeration. Image via Google Earth from NASA/USGS and ESA/DLR/FU Berlin (G. Neukum). Figure 14 shows location.
that left Hebes Mensa as a remnant. Rossi et al. (2008) and Gindrod and Balme (2010) proposed that the mensa is a giant spring mound that post-dates formation of the chasma. However, they did not explain the origin of the chasma itself. Malin and Edgett (2000) suggested that the mensa is an island of chasma-wall material with just a few hundred meters missing from the top due to erosion, but this does not explain the lack of comparable layers in the chasma walls below Upper Hebes Formation.

We present new evidence here based on our models and on detailed geologic mapping that the mensa units, LHFB and LHFL, are composed of deep materials exposed by unroofing and arching, which we tie to diapirism in the discussion section. This hypothesis explains why Hebes Mensa does not consist of younger infill and why its layers are not visible in the chasma walls. Units LHFB and LHFL are thus inferred to be stratigraphically below the level of Lower Hebes Formation exposed in the chasma walls and equivalent to those in Mini-Mensa and in the Southeast Pit (Hauber et al., 2008).

The cratered plains surface is absent on the crest of Hebes Mensa, even though the crest is nearly level with the chasma rim (Figs. 11C and 24). If Upper Hebes Formation ever existed on the mensa, it was removed or altered beyond recognition. The top of the mensa is partly veiled by surficial deposits, including smooth areas scored by dust devils and honeycombs resembling cemented dunes. Beneath this thin mantle, and well exposed on the upper flanks of the mensa, there is unit LHFB (botryoidal Lower Hebes Formation), a unit having botryoidal, concentrically layered cells up to 1 km across and clumps of jumbled pieces of folded layers (Fig. 25). Wind erosion has sectioned and etched the cells. They resemble coalesced fumarolic or spring mounds or small diapirs (Adams et al., 2009). Preserved thickness of LHFB is ~100 m. The unit dips up to 10° outward from the mensa crest on the north and west flanks, and 15°–18° on the southwest slope where the unit reaches the floor of the South Basin (Figs. 13 and 26).

The slump scars and most of the deep gullies were sources of dark material that spilled from all sides of the mensa (Figs. 20, 23, and 24). Adams et al. (2009) proposed that the dark material, possibly particles of basaltic tephra, was expelled by springs from fractures at the surface of the mensa. Dark talus fans typically are aligned and bounded along horizontal fracture traces across the top (spring line?) and in places the bottom (drain line?) of the dark bands and in the alcoves. Dark material in the gullies near the base of the mensa on the west, north, and east sides is contiguous with the dark smooth deposits of the West Pit, North Trench, and the Oil Spill. The dark debris ponding in low areas embayed the adjacent topography, implying that the debris was deposited from a fluid. Further evidence of circulating fluids is the
morphology of the talus fans. Some fans end laterally in cliffs undercut by younger fans, which implies cementation of the older fans, perhaps by precipitates from groundwater, before they were sapped and undercut.

The structure of Hebes Mensa is that of an asymmetric antiformal box fold: Its crest is nearly flat, its hinge encircles the mensa, and the antiform plunges periclinally at both ends. The limbs of the antiform dip into the surrounding pits. Only the north and west sides of the mensa show well-defined layers, and together LHFB and LHFL may only be ~400 m thick. Because layers of LHFL dip at ~10° on topographic slopes of 10°–20° (Hauber et al., 2005, 2006), they create an illusion of greater thickness. The steepest dips on the south flank may approach the slope angles (>30°). On smaller scales within the antiform, layers are offset by myriad small faults and are tightly contorted by disharmonic folds.

On the southwest flank, which is not interrupted by dark bands, LHFBB drapes as a dip slope from the mensa crest to the floor of the South Basin (Fig. 26). A scarp of dark talus along the base of this slope is the headwall of a large alcove block of mensa material that is partially buried under dark flows on the floor of the South Basin. Along the edge of the basin floor, a narrow, pale band continues eastward, branches through the twin alcoves, and connects with the apron of LHFB and LHFL along the southeast wall. The pale band has contorted internal layers, suggesting that it may be a remnant of LHFB or LHFL entrained along the faulted margin of the mensa.

Summarizing, we interpret Hebes Mensa as a 7-km-high mound cored by unknown materials and covered by a thin shell of antiformal LHFB and LHFL—units that include folded and broken layers and a high density of faults. Parts of the shell slumped or flowed off the flanks. Even on gentle slopes, shallow allochthonous flows oozed from the softened shell, especially on the west end of the mensa. Along the southwest chasma wall, the flows embay the mouths of the gullies and the Southwest Plains Canyon. So, the flows off Hebes Mensa were probably a gravity-spreading response to subsidence of the surrounding troughs and pits. Dark material leaked from all sides and accumulated in small basins at the base of the mensa slopes. The contact between the mensa and its surroundings is obscured by all these surficial deposits and flows except along the faulted southwest margin. The structure of the mensa is not consistent with an undeformed stack of interior layered deposits or chasma wall material. Instead, we infer that the Hebes Mensa rocks were raised from depths equivalent to the Southeast Pit.

In the discussion section, we speculate on the kinematics behind the rise of Hebes Mensa.

DISCUSSION

Karstic Collapse

Having examined the landforms of Hebes Chasma, we favor karstic collapse to explain its origin, although other Valles Marineris chasmata most likely formed by a combination of processes that varied with location.

Figure 26. (A) Present-day N-S cross section across Hebes Chasma and mensa. Location shown in Figure 14. (B) The same section restored to a stage after the chasma subsidence had mostly ended, after the drains were clogged and overrun by flows from the base of the mensa and chasma walls. (C) The same section restored to an even earlier stage of chasma subsidence as erosion and extensional thinning unroofed the mensa. Thin flows and deposits are thickened in the cross sections to show age relations. For restoration method and implications, see the text; for map symbols, see Figure 13. DSD—dark smooth deposits.
Karstic subsidence entailed 10^7 km3 of material draining from the chasma by subsurface fluid flow. This hypothesis explains (1) how the missing material was removed when a mixture of ice, hydrates, soluble minerals, or hydrous salts melted or disassociated and yielded water to drain into a regional aquifer, leaving behind insoluble solids; (2) absence of deposits around the chasma rim, excepting a coating of dust; (3) absence of a surface outlet and of fluvial channels on the chasma floor; (4) the elliptical planform, abrupt scalloped margins, blunt ends, and roughly uniform depth of chasma; (5) absence of nearby grabens in the plains except for narrow fossae; (6) inward tilting of Upper Hebes Formation along the chasma walls; (7) preservation of the plains surface and Upper Hebes Formation on fault-bounded benches; (8) pits on the chasma floor, which acted as drains; (9) allochthonous flows that oozed from chasma walls and mensa flanks and that end in pits; (10) Hebes Mensa and Mini-Mensa as antiforms arched by diapirism so that the shallow-sourced flows off Hebes Mensa were actually fed by a deep but upwardwarped stratigraphic layer; and (11) presence of the adjoining Echus Chasma outburst flood (Robinson and Tanaka, 1990).

If the karstic collapse hypothesis is correct, chasma-wall “landslides” interpreted by others are (1) inward-tilted slabs of plains surface or (2) allochthonous flows of stratigraphically older material. Hebes Mensa, which has been widely interpreted as a younger infill of “interior layered deposits,” instead consists of uplifted stratigraphically old layers, which is our contention. Allochthonous flows shed off the mensa surfaced the chasma floor and embayed gullies in the chasma walls. It is these allochthonous flows that are younger than the formation of the chasma, not the layered materials of the mensa itself.

Any one feature in Hebes Chasma is open to several interpretations, but the weight of geologic observations and model simulations build a strong case for karstic subsidence to form Hebes Chasma. The following geologic observations and interpretations explore more deeply the two main processes forming Hebes Chasma: (1) subsidence, which is familiar in karstic collapse, and (2) mobilization, which is not. This leads to speculation on the composition and rheology of the mobilized materials.

Surface Expression of Subsidence

Regional Structural Control

Three fracture sets in the plains surface influenced Hebes subsidence. The main regional fracture set strikes west-northwest as part of the Valles Marineris system of linear, parallel canyons (Fig. 1A). On this trend, 150 km farther east from Hebes Chasma, there lies Ganges Catena, a 227-km-long intermittent chain of pits that partly merged to form a small chasma (Fig. 1A). Pit chains have been attributed to local collapse, physically modeled by drainage into dilational normal faults and subvertical fissures (Wyrick et al., 2004). The same west-northwest trend continues the other side of Hebes Chasma as the squared-off head of Echus Chasma (Fig. 1A). A swarm of wrinkle ridges trending north-northeast from the Thaumasia Plateau completes a structural picture of east-southeast shortening and north-northeast extension.

A second, minor set of regional grabens strikes northeast, oblique to the main Hebes trend. These fossae control the stubby side canyons of western Hebes and fray the canyon margins (Fig. 11C). Hebes Chasma incises the north margin of the Thaumasia Plateau, an uplift having structures that suggest a megaslide (Montgomery et al., 2009). Some have suggested an organic origin for the plateau (e.g., Courtillot et al., 1975; Anguita et al., 2006), but this idea was disputed by Nahm and Schultz (2010) because the low topographic slope is incompatible with critical-taper mechanics (an argument they further invoked to question the megaslide hypothesis and a role for salts even though the viscous yield strength of salt is [1] more relevant over geologic time than frictional strength and [2] negligible compared with the frictional strength they modeled). The north margin of the megaslide, which includes Ius, Melas, and Coprates chasma (Fig. 1A), was inferred to be left-lateral transtensional, which would explain the oblique grabens at the west end of Hebes Chasma (Fig. 11C). Northwest of the chasma, there is a set of north-striking grabens called Echus Fossae (Fig. 1A), but approaching Hebes Chasma, this set curves into alignment with the northeast-striking grabens (Fig. 11C).

A third, much smaller set of grabens in the plains surface are curved and concentric to the chasma rim (Fig. DR4 [see footnote 1]). Their geometry suggests that they are unloading fractures formed during chasma collapse.

Processes of Subsidence

During subsidence, material did not simply fall into a canyon and disappear down a drain. Instead the deep Lower Hebes Formation and older rocks began to sag as their fluids drained downward or escaped to the atmosphere. This sag spread to the surface and caused the surface to drape as swales. As the swales sagged further, they extended and broke into slabs. The slabs tilted inward toward the most active drains. Shallow parts of the slabs preserved the plains surface in extensional fault benches.

These relics fragmented as subsidence intensified. As material migrated inward to the nearest drains, the overall chasma collapse widened as lateral support was removed, creating headwall alcoves. The style of collapse depended on proximity to the drains. Chasma walls close to a drain, such as the West Pit, collapsed in massive landslides, the debris of which poured directly into the pit. In contrast, where chasma walls were far from a drain, such as the East Pit, shallow layers foundered as cohesive slabs that became mobilized in their deeper parts.

Diapirism and the Rise of Hebes Mensa

Other authors have inferred salt diapirs in the Valles Marineris (e.g., Milliken et al., 2007; Popa et al., 2007; Baioni and Wezel, 2008). However, our paper is the first to link diapiric rise and karstic collapse on Mars. We know of no terrestrial analogs combining diapirism and collapse, although there are small-scale similarities with sink holes, where deep, mobile salty mud wells up between foundering fault blocks (Fig. 17B).

Downward drainage and upwelling diapirism were both driven by gravity. Diapirs rose and emerged sporadically at the surface wherever overburden thinned extensionally at the hinges of inward-bending slabs or in gaps where slabs tore away toward the drainage pits (Fig. 7). This structural unroofing created a differential load that forced the mobile material upward by active or reactive diapirism, as in salt tectonics (e.g., Vendeville and Jackson, 1992; Schultz-Ela et al., 1993; Huddec and Jackson, 2007). Emergent diapirs then extruded deep-sourced allochthonous flows from the walls of Hebes Chasma and the base of Hebes Mensa (Fig. 22). An extreme pressure gradient separated several kilometers of overburden load rimming the chasma from a merely atmospheric load at the free face within the chasma. This lateral pressure gradient would have expelled mobile material into the chasma floor, regardless of its density.

Evidence for Diapirism of Hebes Mensa

The largest structure within the chasma—Hebes Mensa—has also been the most refractory to explanation. We suggest that the stratigraphic and tectonic paradox of Hebes Mensa can be explained by the arching of a large giant diapir surrounded by drainage pits and troughs. Four lines of evidence support the diapiric hypothesis.

First, stratigraphic units in Hebes Mensa were demonstrably mobile. At least 20 flows oozed down the sides of the mensa, and some reached deep pits after flowing up to 23 km. Most of these flows originated in the botryoidal...
layer, LHFc, the layering of which survives in streaked or contorted flow patterns in the flows. Some flows are bordered by recumbent drag folds in their source layers (Fig. 20B).

Second, the antiformal structure of the mensa is typical of the arched roofs of active diapirs (Fig. 24). Extrapolating the dip of the botryoidal layer outward from outcrops on the crest of the antiform results in a geometry consistent with the hypothesis that equivalent strata lie in the lower part or base of the chasma walls (bearing in mind the liberal assumptions extrapolating vanished deformed strata) (Fig. 26). Further evidence for this correlation is the previously mentioned similarity of layered deposits in the walls of the Southeast Pit to those on the upper slopes of Hebes Mensa, several kilometers higher in relief. Lateral shortening and magma intrusion can also arch strata, but evidence for these processes in Hebes Chasma is lacking.

Third, the models show how unroofing during subsidence can trigger diapirism and create a broad arched uplift after surrounding areas subside and drain away. Recall the comparison of two models in Figure 12: The mensa formed by extension alone had a flat-topped crest level with the plains, whereas the mensa formed by diapirism and extension had an arched crest below the plains level, like Hebes Mensa. The model shows how a diapir responds to extensional unroofing. The crest of the dome extended (Fig. 9A). Unit 1 was largely stripped off by this crestal extension, then by mass wasting of both units 1 and 2 (Figs. 9B and 9C), and then by viscous flow of unit 3 off the arch beneath a mantle of a thinned unit 2 (Fig. 9D). Viscous unit 3 in the core of the model dome rose diapirically, partly because it was buoyant and partly because unit 3 was over lain by thinned overburden and so received viscous flow from areas loaded by thicker overburden. This model dome was equivalent in position to Mini-Mensa, another inferred diapir in Hebes Chasma.

Fourth, a shift in the dynamic balance between drainage and upwelling in the North Pit records arching of Hebes Mensa. This shift altered how drainage influenced major flows from the north wall of the chasma. Ends of these flows are close to the base of the mensa and mark the approximate position of the drainage axis during their flow (Fig. 23). However, the midsection of these flows is now lower than their termini. The North Pit trench, a crease-like drainage axis, now crosses the middle of flows from the north chasma wall, which indicates that the flows have been back-tilted away from the mensa. This anomaly indicates that the drainage axis shifted northward away from the mensa after the flows extruded. This outward shift of up to 10 km is compatible with gradual rise and arching of Hebes Mensa. The same outward shift is suggested by the outward tilt of smooth dark sediments at the north and west foot of the mensa (Fig. 13). The deposits embay gullies at the base of the mensa, implying that they accumulated horizontally, but they now tilt 10° northward. We infer that further rise of the mensa lifted and tilted sediments to their present dip and displaced the West Pit outward to its present position.

The flat crest of Hebes Mensa is compatible with diapirism. Most terrestrial halokineti c diapirs covered by a roof are overlain by subhorizontal or gently arched strata, extended by normal faults (Nelson, 1991; Schultz-Ela et al., 1993; Rowan, 1995; Davison et al., 2000). Even the crest of a diapir itself is dominated by subhorizontal flattening fabrics in models (Dixon, 1975; Jackson and Talbot, 1989; Talbot and Aftab, 2004; Chemia and Koyi, 2008). The only robust exception to horizontality is where dissolution has removed the diapir’s crest so that steep fabrics, which formed deeper in the diapir, subcrop against the overlying cap rock or the topographic surface (Richter-Bernburg, 1987; Talbot and Jackson, 1987; Jackson et al., 1990; Talbot et al., 2009). These analogies with model and terrestrial diapirs explain why the crest of Hebes Mensa is flat and predict that steeper structures are likely in the mensa’s core.

In summary, we infer that Hebes Mensa consists of lower Lower Hebes Formation layers—equivalent to those exposed in the Southeast Pit—that were arched by diapirism to the level of the upper Lower Hebes Formation in the chasma walls. The mensa rose in response to extensional thinning, mass wasting, and flows off the mensa, all this deformation being in response to subsidence. This unroofing removed the youngest layers (Upper Hebes Formation and upper Lower Hebes Formation).

Amount of Diapiric Uplift of Hebes Mensa

To evaluate the amount of diapiric uplift, we return to the back-tilted dark smooth deposits and flows from the base of the north wall, which caused the axis of the North Pit to migrate outward several kilometers from the mensa (Fig. 23).

Figure 26A shows a present-day topographic profile and partial cross section across the chasma. To remove the northward tilt of the dark smooth deposits and restore its upper surface to an inferred originally horizontal attitude, we rotated the topographic profile 9° by pivoting on a hinge at the lowest point in the North Pit (Fig. 26B). After this 9° rotation, the ends of the flows from the north chasma wall sloped 3° southward throughout their length, which is compatible with an original flow direction before back tilting. The same 9° rotation of the north slope of the mensa lowered the base of LHFc ~5 km to ~2500 m, which is ~5 km below the present chasma rims (Fig. 26B). Projected outward, the altitude of the reconstructed base of LHFc is near or below the base of the present chasma walls, which would explain why layers similar to those in the mensa are absent in the chasma walls but are present in the deep South-east Pit. Backward in time, addition of ~5 km of material above the base of LHFc before arching of the mensa would put the top of a proto-mensa at about the level of the present plains surface (Fig. 26C). Thus, if the plains surface, Upper Hebes Formation, and ~5 km of Lower Hebes Formation once existed over the mensa, and that material were removed by erosion and extensional thinning into the active drains, the mensa still would have to rise ~5 km diapirically to reach its present altitude.

The main diapiric mass inferred to be present in the core of Hebes Mensa and responsible for its arching would have a present-day relief of at least 5 km. Depending on whether this core is a concordant pillow (geometrically like a laccolith) or a discordant diapir, the original thickness of the source layer for the mobile core could have been 1 km to 4 km thick if analogy with terrestrial salt structures is valid (e.g., Worrall and Snelson, 1989; Diegel et al., 1995; Rowan, 1995; Gottschalk et al., 2004; Jackson et al., 2008).

Timing of Diapiric Uplift of Hebes Mensa

The flows across the floors of the North Trench and South Basin also hold the key to timing of arching. If the above restoration is correct, most of the uplift of the present mensa must have occurred after the surrounding pits and troughs had ceased to drain as they became blocked with allochthonous flows and choked by debris. Once the drains were blocked, the trenches provided solid surfaces on which the allochthonous flows, slides, and deposits of dark smooth deposits from the mensa now rest (Fig. 26B). Allochthonous flows from beneath the mensa and below the south chasma wall continued to resurface the western end of the South Basin. However, material shed from the mensa was not deposited on the surface of the western end of the South Basin or in the South-east Pit. The Southeast Pit, which exposes deep outcrops of LHFc at the bases of Hebes Mensa and Mini-Mensa, must have continued to drain after the mensae rose.

The key conclusion from this hypothesis is that the chasma collapsed and drained before most of the mensa arching occurred. The two processes are dynamically linked, so why should they be separated in time? The simplest
explanation is that the two processes differed in rate. Subsidence, drainage, and collapse were relatively rapid, perhaps even catastrophic. In contrast, diapiric uplift was slower, so although it began when subsidence began, uplift continued after collapse mostly ended as the drains clogged. Diapiric arching ended when the mensa was high enough that its elevation head restored static equilibrium to the mobile layer.

Removing the tilt in the North Trench places the base of LHFB in the mensa within a kilometer or so of the surface of the floor of the chasma during deposition of the dark smooth deposits. Perhaps the botryoidal structures of LHFB formed at the time depicted in Figure 26B. The botryoidal features resemble the small concentric diapirs and pimple-like mounds that still exist in the North Trench, features absent in the other pits and trenches. Before the main arching of the mensa, the botryoidal layer may have been a spring field for fluids emerging from the chasma floor. These fluids may have flushed dark particulates from out of fractures in the mensa and from the pimple-like mounds.

Mini-Mensa is structurally similar to Hebes Mensa in that it is a pale antiform adjacent to pits and troughs. Outward-dipping layered rocks of LHFB form the flanks of Mini-Mensa. Although not extensive enough to be mapped, a few botryoidal structures near the top of the mensa suggest that LHFB may overlie LHFB. Mini-Mensa and Hebes Mensa are separated by a fracture zone that extends deep into the Mensa in that it is a pale antiform adjacent to pits and troughs. Outward-dipping layered rocks of LHFB form the flanks of Mini-Mensa. Although not extensive enough to be mapped, a few botryoidal structures near the top of the mensa suggest that LHFB may overlie LHFB. Mini-Mensa and Hebes Mensa are separated by a fracture zone that extends deep into the Southeast Pt. The similarity of the two mensae implies a common diapiric origin.

Rheology of Mobilization

Some materials, such as ice or salts, are inherently mobile (for a review, see Talbot and Pohjola, 2009). Salt glaciers and rock mechanics show that halite and other weak salts can flow rapidly at surface temperatures on Earth (e.g., van Keken et al., 1993; Weijermars et al., 1993; Talbot, 1998). Other rocks need to be softened before they flow at geologically meaningful rates. Geologic observations from Hebes Chasma suggest a mixture of two softening processes: autochthonous mobilization and allochthonous mobilization.

Autochthonous Mobilization

During autochthonous mobilization, brittle material changes in situ to weaker viscous fluid with gradational contacts. Magmatic heat-
which is characteristic of the compressional toe of a landslide, but not its head. (4) Some flows emerge with longitudinal streaks, suggesting that they began flowing underground. (5) Some flows contain deformed layering continuous with stratigraphic layering at their source.

Evidence of volcanic flows in Hebes Chasma is sparse. Volcanic ash is likely to be part of the stratigraphy of Hebes Chasma; the nearest major volcano, Tharsis Tholus, is 1100 km away. The dark deposits filling gullies down the flanks of Hebes Mensa and ponding at its base have been interpreted as low-viscosity lava flows, as has the entire Hebes Mensa, by Ori et al. (2005). However, we interpret the dark deposits as particulates weathered from the Lower Hebes Formation and probably entrained in the outflow of aqueous springs, as discussed in Adams et al. (2009). Similarly, the large allochthonous flows in the floor of Hebes Chasma are unlikely to consist of lava for the following reasons. (1) The flows are too viscous to be mafic. Their flow morphology suggests a viscosity similar to that of felsic lavas, but felsic volcanic flows issue from cones or agglutinate ridges, which are not recognized at Hebes. (2) Hebes flows end in pits. (3) Why lavas would be expelled laterally from the walls of collapse structures but not from the surrounding plains is unexplained. (4) Hebes Chasma is not a volcanic caldera. (5) Volcanic flows explain neither the huge subsidence nor the proximity to giant floods in Echus Chasma.

Water ice has an important role near the surface of Mars, as evidenced by a wide range of landforms and landscapes (reviewed by Kargel, 2004; Baker, 2006), by remote sensing (Bandfield, 2007), and by direct observation of ice- and water-associated minerals (Smith et al., 2009). Melting ice could have released huge volumes of water, the drainage of which into an aquifer would have contributed to collapse of Hebes Chasma (Montgomery and Gillespie, 2005). Ice may be part of some masf flows. For example, the North Flow falls 1.9 km over 41 km, an average slope of 2.7°. Its profile is equivalent to the viscous response of an ice glacier containing ~20% rock debris under Martian temperatures and gravity (Bourgeois et al., 2008).

Ice has its limits. (1) Ice is too weak to bear canyon relief of 8 km, so any ice in the canyon walls must be locked in pore space by the frictional strength of non-ice particles. (2) Surface ice ablates and shrinks at a rate determined by the thickness of insulating rubble. After surviving billions of years of exposure, the pale material cropping out in the flows is unlikely to be ice, although it may have been more icy during flow. (3) Glacial ice flows are not expected to come from the subsurface (although Mars still has many surprises and water seeping from the ground could locally freeze as sheets of aufeis; Kargel, 2004).

Gas hydrates and pockets of free gas trapped in the cryosphere also may have contributed water. Methane and carbon dioxide gas trapped within the crystal lattice of water ice could be stable on Mars within the water-ice cryosphere from near surface to as much as a kilometer below the base of the cryosphere (Hoffman, 2000; Pellenbarg et al., 2003). Magmatic warming and pressure release from structural unroofing during subidence could liberate gas, which bubbled upward, and water, which drained downward.

Role of Salts

As Mars became drier and colder, salts could have formed as evaporites as salty water evaporated, not necessarily from standing bodies of water (Forsythe and Zimbelman, 1995; Mancinelli et al., 2004; Sguirets et al., 2004; Tosca et al., 2005), or salts could have formed by hydrothermal precipitation and replacement in the subsurface at supercritical temperatures above 405 °C (Hovland et al., 2006a, 2006b). We have speculated elsewhere that parts of the Martian megareolith are rich in water, salts, and tephra (Montgomery and Gillespie, 2005; Bigot-Cormier and Montgomery, 2007; Adams et al., 2009; Montgomery et al., 2009). In the present paper, we refer to “layered deposits” without connoting their origin, whether by impact, volcanism, or sedimentation. Layered deposits in any prechasma basins on Mars could include significant proportions of salts, which can form in a wide range of concentrations as discrete layers or cements, as proposed by Montgomery and Gillespie (2005).

As a weak constituent of Martian layered deposits, salts have some advantages over ice in explaining how Hebes Chasma collapsed. (1) There are no inherent depth limits for buried salts, unlike the cryosphere, which is limited to a depth of only a kilometer or two, depending on the latitude and the geothermal gradient. (2) Salt does not sublimate like ice and so can survive on the surface for billions of years without rainfall. (3) Hydrous salts, such as kieserite, epsomite, hexahydrite, and gypsum, have been identified spectroscopically on Mars, including in Hebes Chasma (Gendrin et al., 2005; Hauber et al., 2006, 2008; Adams et al., 2009). These occurrences include an unexplained proportion of halite and other anhydrous salts, which are spectroscopically difficult to detect on Mars. (4) Most salts flow readily and are the weakest crystalline rocks. (5) Hydrous salts disassociate on heating and yield water that can drain away, shrinking the host rocks. Like ices, salts have strength limits. On Earth, salt mountains above diapirs spread under their own weight to form salt glaciers that advance subaerially at rates up to 10 m/yr (Talbot and Pohjola, 2009). Larger salt glaciers advance more slowly at up to 8–20 mm/yr underwater (Jackson et al., 1994). The equilibrium slope of terrestrial salt glaciers is similar to that of the deep-sourced flows from the chasma walls, although we are not implying that the chasma flows necessarily consist mostly of halite. The North Flow’s average slope is 2.7°. By comparison, one of the largest shallow allochthonous salt flows in the Gulf of Mexico falls 1.7 km over 40 km, an average slope of 2.4° (Schulz-Ela and Jackson, 1996). The walls of Hebes Chasma are too steep to consist of pure salts. For this reason, we infer that when first excavated, the upper walls consisted of a mixture of insoluble particles such as tephra and rubble with lesser amounts of sulfate and other salts, and water in solid form near the surface and liquid at depth. The lower walls could have been richer in weaker salts and contributed more to subsidence. The spectroscopic distribution of the salts in Hebes Chasma is discussed by Adams et al. (2009).

Disintegration and Deep Fluid Transport from Hebes Chasma

In the model, the brittle upper layers broke into rafted blocks, lumps, or particulate flows (Figs. 7, 8, 9, and 10). The Hebes Group also broke up as fault blocks cascading inward to the drainage pits (Figs. 16 and 21). Although Martian gravity is only one third that on Earth, the body forces breaking blocks in Hebes would have been much greater than in the model because body forces increase at a cubed proportion of the length scale (Hubbert, 1937).

Crumbling blocks increase surface area, which would hasten melting or sublimation of any fresh exposed ice or gas hydrate, causing further comminution. Some weathered material may have drained into the aquifer through a multitude of fissures in the fractured floor, organized along preexisting faults. Even so, there is unlikely to be sufficient space in the subsurface for the solid fraction of missing material, and the aquifer may have been saturated even before collapse began. Groundwater must have been expelled onto the surface to make room for the lost material, which must have been mostly water or other fluids, including gas. The most obvious route to the surface could have been as short as 5 km to the head of the Echus Chasma outburst flood into Kasei Valles.

As fluids drained from the collapsing Hebes Chasma, local pressure in the aquifer eventually
fell below the pressure under the adjacent plains. Brine from the regional aquifer beneath the plains may thus have leaked laterally into the chasma floor as the canyon widened. If so, any brine could have evaporated to leave another contribution of salt.

Summary of Events

We interpret here landforms in Hebes Chasma guided by insights from the physical models and identify a wide range of Hebes landforms consistent with karstic collapse. Our evolutionary model may apply elsewhere on Mars, especially in the neighboring Valles Marineris, but a comparative survey of other chasmata is beyond the scope of this paper. Here, we summarize and illustrate (Fig. 27) the inferred sequence of events at Hebes, the causes and effects of which are only partly understood.

Valles Marineris canyons, including Hebes Chasma, may have begun forming near the Noachian-Hesperian boundary, at ca. 3.7 Ga (Carr and Head, 2010). Instability started with local warming above the normal geothermal gradient in part of the planet dominated by large fracture systems striking west-northwest. Heating could have resulted from local magmatic heating, possibly as a local expression of Tharsis magmatism, or concentrated fractures could have focused advection of hot fluids from depth. Melting of permafrost ice and perhaps gas hydrates in the uppermost kilometer or two of layered deposits in the chasma walls and thermal dewatering of hydrous salts at all levels freed copious amounts of water and gas.

Fluids derived by melting and dewatering and some fraction of suspended materials began to drain through fractures into the aquifer, especially at intersections or concentrations of large fracture zones. Much of the drained fluids burst out where the aquifer intersected the surface, as at Echus Chasma. The enormous flux of fluids inferred for Echus Chasma suggests that the outburst received water and other liquids and gases from elsewhere besides Hebes Chasma.

The first surface sign of deep drainage was sagging of the plains surface as gentle swales above the most active drains (Figs. 6A and 27A). Within each sag, the plains surface tilted inward, hinging on peripheral grabens and overriding in a contractional crease in the floor of each swale.

Further subsidence caused surface layers to slide above weak material into pits (Figs. 6B and 27B). Sliding brittle material broke into fault benches and then slabs and smaller pieces that crumbled and drained away. Extensional breakaways for these inward slides spread outward in response to inward collapse (Fig. 6C).

These extensional zones were curved and concentric to erosional headwalls in the chasma and were influenced by two sets of regional extensional faults.

Landslides occurred where subsidence over-steepened the chasma (Fig. 27C). As material drained into the deepening pits, this unroofed warmer and softer material near the base of the chasma walls. Unconfined allochthonous flows extruded laterally from the chasma and mensa walls into the pits. These extrusions sapped and undermined the stronger overburden. All the displaced material—benches, slabs, landslides, talus, and allochthonous flows—moved toward drainage pits in the chasma floor. The chasma floor began to break up by brittle rupture and

Figure 27. Block diagrams showing three phases (A, B, and C) in the evolution of Hebes Chasma inferred in this paper and described in the “Summary of Events.” The isograd marks the upper limit of mobilized material. Views, which are not to scale, are toward the southwest.
viscous flow to form chaos terrain. Collapse spread outward to the edge of the mobilized material at the chaos margins (Fig. 6D).

Warm, mobile material rose diapirically from depth because it was less dense than its overburden and because of differential loading induced by exhumation (Figs. 27B and 27C). Diapirism focused where the overburden was most thinned by extension, mass wasting, and flow into the drainage pits.

Hebes Mensa and Mini-Mensa are islands of stratigraphically deep rocks surrounded by collapse basins. After their roofs slided and flowed into the pits and the allochthonous flows had covered the clogged drains, the mensae warped into box-shaped antiforms by diapiric arching and extensional sagging of their flanks (Figs. 27B and 27C). As Hebes Mensa arched, it back tilted some allochthonous flows and dark deposits and displaced the drainage depressions outward by up to 10 km. This arching was late in the evolution of Hebes Chasma and postdates heavy bombardment, as implied by the absence of large craters in the mensa’s crest (Rossi et al., 2008).

After drainage into the pits ended, surficial deposits, many of them dark, continued to weather out of slopes or blew into the chaos and accumulated in the pits and on top of Hebes Mensa. This new view of how Hebes Chasma formed, together with the findings of Adams et al. (2009), links many otherwise perplexing features, especially the origin of Hebes Mensa, which has been especially enigmatic. Formation of Hebes Chasma by karstic collapse and drainage followed by arching of its unroofed floor to form the mensa explains otherwise puzzling topography and stratigraphy with a single genetic process involving both drainage and upwelling. Similar processes may have helped form other chasmas of Valles Marineris, but each chasama did not necessarily form in the same way.

ACKNOWLEDGMENTS

The Applied Geodynamics Laboratory consortium funded Jackson’s and Dooley’s work. National Aeronautics and Space Administration (NASA) Mars Data Analysis Program grant NNX07AV77G contributed support for Gillespie. We had useful discussions with J.-P. Combe, G. Skerlec, and B.C. Schreiber. Thorough reviews by C. Okubo and E. Hauber greatly improved the paper. T.B. McCord provided technical support; figures were drawn mostly by the authors but also by Nancy Cottington and Laura Gilson; Lana Dieterich edited the paper. This contribution is published with permission of the Director, Bureau of Economic Geology.

REFERENCES CITED

Baker, W.H., 2006, Chasmos and other chasmata did not necessarily form in the same genetic process involving both drainage and arching of its unroofed floor to form the mensa explains otherwise puzzling topography and stratigraphy with a single genetic process involving both drainage and upwelling. Similar processes may have helped form other chasmas of Valles Marineris, but each chasama did not necessarily form in the same way.

43

