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T h e  surface roughness of alluvial fans in Death Valley, 
California, changes as the fans age. Because radar back- 
scatter is sensitive to surface roughness, it is possible to 
map relative surface age using Synthetic Aperture Radar 
(SAR) data. We have examined surface roughness esti- 
mates in Death Valley from Shuttle Imaging Radar-C 
SAR data with the use of a technique that we call fore- 
ground~background analysis (FBA), with the goal of es- 
tablishing a rot~st inversion method that is extendible to 
a range of surfaces and conditions. In this method, a 
foreground entity (in this ease roughness) is distinguished 
from complicating background factors (including the dis- 
tribution of interrrvediate-scale slopes, vegetation, and di- 
electric constant). The in.version for roughness is non- 
unique even when constrained by the use of field 
measurenu3nts. When the range of possible solutions is 
examined, it is observed that they fall into a small num- 
ber of &)mains, each with distinct characteristics that are 
probably associated with physical factors such as the 
scale of roughness. Solutions were compared with those 
detennined from the semiempirical (SEM) and integral 
equation (IEM) ~ru)del.s, and all solutions were evaluated 
with respect to field knowledge. The SEM and IEM solu- 
tions, and those obtained using FBA together with the 
field measurements, fall into a common domain of solu- 
tions that are susceptible to contamination by back- 
ground effeet~ and hence may not be extendible to other 
geographic locations. A domain of stable solutions that 
are ~ru~re extendible does exist; however, this extendibility 
is achieved at the expense of reduced resolution of 
roughness levels. For Death Valley, we estimate that it is 
possible to resolve only fimr levels of roughness, which is 
far fewer than can be theoretically resolved with existing 
inversion algorith~7~. ©Elsevier Science Inc., 1997 
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INTRODUCTION 

Roughness and dielectric constant of the land surf;ace are 
important parameters to many scientific disciplines. In 
the geological and geomorphologieal study of surfaces, 
for example, surface roughness is related to physical pro- 
eess and to exposure history. One of the objectives of the 
analysis of Shuttle Imaging Radar C (SIR-C) Synthetic 
Aperture Radar (SAR) data over land surf:aces is the re- 
trieval of these physical parameters. A number of ap- 
proaches to this problem have been advanced that use 
field roughness and dielectric measurements from a 
given locality or type of surface to validate or develop 
inversion methods (Dubois et al., 1995; Oh et el., 1992; 
Shiet el., 1996). These methods are suecessfid within the 
particular locality or on the particular surface type. How- 
ever, it has not been demonstrated that they can be ex- 
tended beyond the geographic locality and surface b~)e 
on which they were developed and tested. This is due in 
part to the complexity of natural surfaces and in part to 
the paucity, of adequate field data. 

Many aspects of natural surfiices alter the radar 
baekscatter. These include the surfhee roughness, the 
amount and type of vegetation, and the snffaee porosity 
and moisture. Roughness itself is a complex characteris- 
tic of surfaces that is dependent on spatial scale. Rough- 
ness at scales near the radar wavelength (5 cm for 
C-band), and at all scales greater, affects the radar back- 
scatter. Therefore, radar response to roughness can be 
complex and variable from location to location. In Death 
Valley, the surface topography at different scales is con- 
trolled by sand grains, cobbles, washes, fans, and moun- 
tains. It is useful to treat roughness differently at differ- 
ent scales. We define the intrinsic surface roughness as 
microtopography at or near the scale of the radar wave- 
length; intermediate-scale roughness is larger-scale to- 
pography that is beneath the resolution of ,typical Digital 
Terrain Models (DTMs); and topography itself is re- 
solved at the DTM scale (commonly 10s of meters). The 
field measurement of intrinsic surface roughness is a 
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painstaking, time-consuming process and, in a given field 
area, many such measurements are needed to character- 
ize the variability in surface microtopography. Intermedi- 
ate-scale topography is best characterized by using ste- 
reographie aerial photographs taken at low altitude (Farr 
et al., 1991). One objective of theoretical and empirical 
inversions of SAIl data has been to determine the intrin- 
sic surface roughness for natural surfaces. The existence 
of roughness at greater spatial scales adds complexity to 
an already difficult problem. 

Commonly, effects of large-scale topography on ra- 
dar baekscatter are accounted for by using readily avail- 
able DTMs. However, it is not possible to account ibr 
intermediate-scale effects, because the necessary DTMs 
do not exist. The effect of" topographic complexity on the 
radar backscatter will propagate into the results of inver- 
sions for intrinsic surface roughness. In Death Valley, in- 
termediate-scale topographic features are primarily due 
to networks of washes descending across the fans. 

This topographic complexity, together with additional 
competing effects on the observed SAIl signal, implies 
that a data set of high dimensionality is required for a 
unique inversion for intrinsic roughness. However, the 
various channels of SIII-C data (frequency and polariza- 
tion) are, in general, highly correlated. This suggests that 
the intrinsic dimensionality of the data is snrall---certainly 
smaller than the number of physical variables that poten- 
tially affect the signal. It has been estimated that five 
parameters are required to completely describe the in- 
trinsic surface roughness alone (Goff, 1995). Additional 
parameters are needed to describe intermediate scales of 
ronghness, dielectric variation, and vegetation effects. 
Thus, the solution for physical parameters from SAil 
data is indeterminate, and we expect an infinity of poten- 
tial solutions. Additional information is necessm T to re- 
strict the range of possible solutions. This provides moti- 
vation for the use of" all possible bands of SAIq data and 
of other data sets, such as Landsat Thematic Mapper 
(TM), that may also relate to roughness (Weeks et al., 
1996). Field experience and knowledge also are particu- 
larly important in this respect. 

In this article we explore a method of analysis called 
foreground/background analysis (FBA) that approaches 
the inverse problem in an adaptive way (Smith et al., 
1996; Weeks et al., 1996). In some ways, foreground/back- 
ground analysis (FBA) is similar to investigative strategies 
such as constrained energy minimization (Harsanyi, 
1993; Farrand and Harsanyi, 1996). The SAt/ signature 
caused by undesired factors, such as those mentioned 
earlier, is labeled as "'background," and the signature 
caused by intrinsic roughness is labeled "foreground." 
The actual foreground/background separation is accom- 
plished by applying finite impulse response (FIB) filters 
to the different channels of radar data. We optimize the 
FIR filter by constructing a solution space from the set 

of all possible filters and examining this space fbr filters 
that minimize the background et]iects or maximize the 
ibregronnd/background contrast. The Fit /  filter can also 
be optimized by using field data ancl/or other aspects of 
field knowledge such as the spatial distribution and or- 
dering (in terms of roughness) of surfaces. The latter so- 
Intions are comparable to existing empirical inversions 
for roughness (Dubois et al., 1995), 

One of the additional advantages of FBA is that it 
can be applied to other types of multispectral data and, 
hence, it provides a common framework of analysis. We 
have already demonstrated (Smith et al., 1996; Weeks et 
al., 1996) that VNlll data from Death Valley can he used 
to retrieve surface roughness parameters with ahnost as 
much success as that achieved with the use of SAt/data, 
but the sensitivity of the retrieval depends on diftbrent 
aspects of the roughness. Hence, there may be advan- 
tages in combining analyses of SAIl and ~qsible and near 
infrared (VNIll) data and increasing the inherent mea- 
surement dimensionality. 

We compare and examine field and image data, us- 
ing diftbrent types of solutions for surface roughness. Us- 
ing our exam empirical solution for roughness, as well as 
the semiempirieal model (SEM) (Dubois et al., 1995) 
and integral equation model (IEM) (Shi et al., 1996), we 
find that nonuniqueness poses significant difficulties in 
Death Valley. We then use FBA to examine the range 
of possible linear Flt l  filter solutions to estimate rough- 
hess in Death Valley i?om various SIIl-C and airborne 
(AIR)SAIl images. Within this range, we find types of so- 
lution that are less susceptible to nonuniqueness prob- 
lems but have less resolution of roughness. 

DATA AND METHODS 

Field Data 

The field roughness measurements have been described 
in detail by Weeks et al. (1996). Briefly, these were made 
at two spatial scales, using a stereophotography tech- 
nique from which microtopograhic profiles could be ex- 
tracted (Farr et al., 1991). Close-range, ground-based 
photographs were used to characterize the millimeter-to- 
meter scale topography, and low-altitude aerial photo- 
graphs were used fbr the meter-to-100-meter scale. Mea- 
surements were made at 13 sites on alluvial fans in 
Death Valley, 11 of' which are included in this study (Ta- 
ble 1 and Fig. 1. With the use of many profiles from a 
given site, a power spectrum of the surface topography 
is estimated. It is found that these power spectra con- 
tbrm closely to a power law. Because a power-law curve 
is a straight line in log-log space, it is possible to describe 
it by using two parameters that are characteristic of the 
indMdual surfaces: the slope and offset of" the mean 
spectra in log-log space. The root mean square (rms) 
height of tile surface is related to the area under the 
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Figuru 1. TM image showing site locations of roughness measurements in Death Valley, California. At each site, the microtopo- 
graphic profiles have been measured, using a close-up photogrammetric technique. Low-altitude pllotogrammet D' at these sites 
has extended the scale of topographic measurements to 10s of meters. 

power spectra, so greater offsets and lower slopes lead 
to higher rms heights. We determined these coefficients 
plus the rms height of the surfaces at the scale of the 
measurement from the measured profiles (Table 1). 

Image  Data 
in this article, we analyze two calibrated, fully polarimet- 
rie SII/-C images of the Stovepipe Wells area in Death 

Valley (DT 35.01, DT l"20.30) and an AIRSAR image 
(CM 3588). The SItl-C images were chosen to be from 
ascending and descending orbits, respectively, and to 
have similar look angles (Table 2). All image data were 
corrected to ground range and then registered to DT 
:35.01 to an accuracy of less than two pixels. Because the 
slopes of all the alluvial fan surfaces ill the present study 
are less than 4 °, we have not applied a terrain correction 
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Table 1. Results from Field Measurements of Surface 
Roughness at the Millimeter-to-Meter Scale Made by 
Using Close-Up Stereophotography at 11 Sites in 
Death Valley 

Site Offset Slope BMS Hei~,ht (cm) 

kfr - 1.88 - 2 . 3 7  0,51 

gt - 1.86 - 2 . 4 5  9.58 

kP3 - 1.77 - 2 . 5 0  9.68 

gcl - 1 , 7 1  - 2 . 6 2  1.15 

kt~v - 1 . 6 9  -2.41 /).91 

kfl - 1.64 - 2 . 7 1  1.06 

kt2 - 1.59 - 2 . 5 7  l. l 0 

md  - 1.58 - 2 . 5 2  0,98 

gco - 1 . 5 4  - 2 . 2 9  1.18 

gew - 1,47 - 2 . 4 4  1.05 

tc - 1.33 - 2 . 6 4  1.65 

The offset and slope of the surface power spectrum are given as well 
as the root mean square (rms) height. Sites are identified in Figure 1. 
The Trail Canyon (tc) site is about 20 km south of Stovepipe Wells. 

to the image data. Results of an IEM-based solution (Shi 
et al., 1996) for roughness were supplied in image lbrm 
by j, c .  Shi. 

Variation in Backscatter with Roughness 
Figure 2 illustrates the relations between field data and 
measured baekscatter for DT 35.01. For convenience, we 
have displayed relations only fbr C ~  and L , .  returns be- 
cause these appear to be representative. Comparing the 
image data and field data, we find that the backscatter 
(a °) averaged over a 5×5 pixel area (about 60×60 m) 
from the SAR imagery in all SIR-C bands is linearly re- 
lated to the surface power-spectrmn offset determined 
from the field measurements (Figs. 2a and 2b) with a 
fair degree of correlation (r~=0.7). On the other hand, 
there is little correlation between mean a ° and the spee- 
trmn slope (Figs. 2c and 2d) and only a weak correlation 
with rms height (L-band has better correlation than 
C-band) (Figs, 2e and 2f), The surface power-speetrnm 
offset is the most significant of the three roughness pa- 
rameters for radar backseatter in Death Valley. This con- 
firms earlier results in the U,S. southwest (Evans et al., 
1992; Farr, 1992). In addition, from Figure 2 it can be 
observed that the relation between backscatter and 
roughness parameters is well described by linear models 
and that little or no improvement in fit would be gained 
from the use of nonlinear models. 

Foreground/Background Analysis (FBA) 
Here we describe an adaptive method of inverse analysis 
in which image data are subjected to finite impulse re- 
sponse (FIR) filters during FBA (Smith et al., 1994; 
1996). FIR filters are linear filters of the fbrm 

uD 

L,= Ew,;a,;+K, (1) 
q = l  

where Y,, is the output of the filter, a is the input signal 
that consists of nb channels or bands, w is the filter, and 
K is a constant. In our ease, the input signal is the SAR 
image data (aq consisting of as many as six bands of data 
per pixel) to which the filter weights (w,/) are to be ap- 
plied to produce Y,, the estimate of the desired quanti~ ~ 
(intrinsic roughness). The filter, operating in the spectral 
domain (wavelength and polarization), is simply a linear 
transformation of the image bands. Because the relation 
between hackseatter and roughness is dominantly linear 
in Death Valley (Fig. 2), the use of a linear approach is 
justified, at least provisionally. 

FBA was developed as an extension of spectral mix- 
ture analysis (SMA) by separating the FIR filter into two 
sets of equations: 

nlumd~ 

Foreground: Yf= ~ Wq~q+K+e, w h e r e f = l . . ,  uj (2) 
q - - I  

~dmM,~ 

Background: )],= ~] w,~q+K+& where b=  1 . . . nh (3) 
q = 1 

and where the wq are again the weights of the filter tbr 
which we solve by, using singular value decomposition 
(SVD) and nf and hi, are the nmnber of foreground and 
background spectra used in the analysis. As formulated 
in Eqs. (2) and (3), any nmnber of spectra are used to 
identify w. Rather than umnixing the image spectra fbr 
the fractions of a set of known constituent spectra (as in 
SMA), FBA estimates the amount of a foreground quan- 
tity (in our case, intrinsic roughness) in the presence of 
a potentially complex (multiple spectra) background. The 
accuracy in the fbreground quantity depends on the 
background complexity and, lbr a given baekgrom-ld com- 
plexity, we can determine the potential error in fi)re- 
ground estimation. 

In this article, we use the simple FIR filter approach 
only [Eq. (1)]. We have separated the FBA analysis into 
two types: one where the filter is used in the inverse 

Table 2. Synthetic Aperture Radar Image Parameters fbr Data Used in 
This Study 

Look Track P ixe l  Polarizations 
ID Angle Angle Wavelengths Spacit,~ Used 

DT 35.01 46.6 ° 42.7 ° C,L 13.3 × 4 m Htf,\&: 
DT 120.30 45.6 ° 141.6 ° C,L 13.3 X 5.2 m HH,\W 
CM 3588 40.1 ° 162.4 ° C,L 12.1 × 6.7 m HH,VV 
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Figure 2. The relation between field data and average backscatter from the image data for DT 3,5.01. Where appropriate, lin- 
ear best fits are displayed together with the value of r e. (a) Variation in Cm~ with surface power spectrum offset. (b) Variation 
in L,,~t with surface power spectrum offset. (e) Variation in CHH with surfaee power spectrum slope. (d) Variation in Lm, with 
surface power spectrum slope. (e) Variation in CHH with surface rms height. (f) Variation in Lull with surf:ace rms height. Weak 
correlations with slope and rms height have been shown in other studies. 
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Figure 3. Results for DT 35.01 of three different inversions for surface rms height and a comparison with surface data: (A) the 
FIR model (optimized by using the field rms height data) (S, location of Stovepipe Wells); (B) the SEM solution (Dubois et 
al., 1995); (C) the IEM solution (Shi et al., 1996); (D) comparison of FBA results with field rms data; (E) comparison of SEM 
results with field rms data; (F) comparison of IEM results with field rms data. The scales on the y e~xes are different. 

sense (empirical FBA) and the other where the filter is 
used in the forward sense (generalized FBA). These are 
fidly described in the following sections. We present the 
empirical FBA method merely as a means of introducing 
the application of FIB filters to image data. Because em- 
pirical FBA uses field measurements to constrain the so- 
lution of the FIR filter, our solution is optimized for 
Death Valley, and we expect improved results compared 
with other methods, such as the SEM model (Dubois et 
al., 1995), which have not been optimized under these 
conditions. However, we also expect that the nature of 
the empirical FBA solution will be similar to the other 
algorithms in that it will not, for reasons to be discussed, 
be reliably extendible to other geographical regions and 
surface types. The generalized FBA technique was devel- 
oped to produce extendible solutions, and, although the 
extendibility characteristic remains to be verified, the 

presentation of this approach is the main point of this 
article. 

Empirical FBA 
In this simplest applieation of FBA, the field roughness 
measurements are used to constrain the solution fbr the 
FIR filter. Spectra are extracted from the SAB images at 
the locations of the field sites. These spectra are input 
into a set of equations of the form of Eq. (1) where the 
Y's are the field measurements of" roughness for the cor- 
responding sites. With 11 sites, there will be 11 equa- 
tions that are solved fbr the unknown w vector, using 
SVD. This w vector will be the optimum linear filter to 
retrieve the field measurements from the SAR spectral 
data for the sites under consideration. When obtained, 
this filter can then be applied to the entire image (see 
Fig. 3a). 
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There are a number of disadvantages with this type 
of solution. Unless the field measurements of roughness 
uniquely account for the image variability, these solu- 
tions will represent only a small subset of the range of 
possible solutions. Much depends on the accuracy and 
completeness of the field data in capturing all of the sur- 
face variability and, given the difficulty in making field 
measurements of roughness, it is unlikely that enough 
measurements will be available to constrain the solution 
reliably. The solution, though accurate at the location of 
the field sites, is free to deviate at all other locations. In 
addition, it may be possible to obtain good fits to the 
field data by using very different types of solutions (dif- 
ferent w vectors). Hence, it is hard to estimate the degree 
to which solutions are contaminated by background 
factors. 

Generalized FBA 
A more complete analysis uses FBA to examine the per- 
formance of the solutions throughout a comprehensive 
range of filters. Instead of assuming (as above) a priori 
knowledge of the outputs (Y,~), we artificially generate 
the filters (w) to produce a range of outputs or solutions 
(Y). The intention is to analyze the entire possible range 
of solutions, which in this case is restricted for simplieit), 
to all linear combinations of C- or L-band or both copo- 
larized channels. To compare the many solutions, numer- 
ical characteristics from the resulting solution image of 
each filter are calculated. These numerical characteristics 
are called "objective functions." In this article, we define 
the objective functions by choosing subsets or regions of 
the solution image that are assumed to represent extremes 
of roughness encountered in Death Valley. The objective 
function {br the foregronnd is defined as the difference 
between rough and smooth subsets, and the fimction for 
the background is defined as the mean variance within 
both subsets. For each of the solutions, Y, the fore- 
ground and background objective functions are calcu- 
lated. As we cycle through all possible combinations of 
band weights (w,i), the values from the objective func- 
tions are plotted as solution surfaces--one for the fore- 
ground and another {br the background. These surfaces 
characterize the solution space. The foreground surface 
represents a description of the solution space that quan- 
tifies the effectiveness with which the FIR filters detect 
roughness in the presence of chltter or background vari- 
abili~ ~ (as we have defined it). It is observed in the re- 
sults section that there are distinctive regions on these 
surfaces where the influence of background factors is 
minimized. 

RESULTS 

Empirical FBA, SEM, and IEM Models 
The theoretical and empirical inversions for intrinsic 
roughness in Death Valley are nonunique. We illustrate 
this problem, first, by examining the results of different 

inversion 'algorithms for a single SIR-C image, and then 
we examine the results for a sequence of ascending- and 
descending-pass images, using a single inversion method. 
Figure 3 shows results from SIB-C DT 35.01 for three 
different inversion models for rms height: the empirical 
foreground/background (FBA), the semiempirical (SEM), 
and integral equation (IEM). For the FBA solution (Fig. 
3a), field-measured rms heights were used to constrain 
the solution. The SEM and IEM (Figs. 3b and 3c) have 
similar magnitudes and the same contrast stretch, and 
they are directly comparable to each other. However, the 
FIB model results are quite different in magnitude, and 
a different stretch has been necessary to display the re- 
sult. All models show a gross similarity in the pattern of 
roughness differences; for example, they indicate that the 
lower east side of the valley is smoother than the west 
side. The models all produce a roughly linear fit to the 
field data for rms height (Figs. 3d-3f). However, in de- 
tail, there are differences in the ordering of surfaces, 
and, more strikingly, we find that the SEM and IEM 
overestimate the field measurements by a factor of two 
to five. 

When we inspect the results, a second difficulty 
comes to light when we compare results of a single in- 
version algorithln for images with different look direc- 
tions. Figure 4 illustrates SEM rms height solutions from 
two SIB-C data takes that have look directions approxi- 
mately at right angles to one another. DT 35.01 is an 
ascending data take that looks primarily along the axis of 
Death Valley, and DT 120.3 is a descending data take 
whose look direction is roughly perpendicular to the 
main valley. The SEM solutions are markedly di{tbrent, 
especially' on the east side of the valley where the as- 
cending pass produces solutions that have as ranch as 
30% greater rms heights. 

Generalized FBA 
In generalized FBA, we examine the entire range of lin- 
ear solutions. For comparison with the SEM and IEM 
algorithms, which use single-band, eopolarized channels, 
we first develop the FBA approach separately on C- and 
L-band copolarized chmmels. The method is then ex- 
tended to analyze C- and L-bands jointly. Figure .5 illus- 
trates the solution profiles determined for C-band copo- 
larized channels for both DT 35.01 and DT 120.30. The 
x axis is an angle from 0 ° to 180 ° that is used to generate 
the normalized band weights (w) {br HH and VV bands, 
respectively; the sine of the angle becomes the weight 
for HH polarization and the cosine is the weight for VV; 
so any point along the axis represents a linear FIR filter 
that can be applied to the image data, and the entire axis 
includes all possible linear combinations of HH and VV 
polarizations, This arrangement is somewhat arbitrary 
and is merely designed to allow us to cycle through the 
range of possible combinations of I t t t  and VV in a sys- 
tematic way. The result of the objective is plotted on the 



390 Weeks et al. 

C. 
6 . 0  

5 .0  

4 . 0  

3 . 0  

oO 

2 . 0  

1 / 

° 
t 

O t  

G.0 

5 . 0  

4.0 

,~  3 . 0  

2 . 0  

/ /  

t 

1 . 0  ' ' ' 1 . 0  ' 0 : 6  . . . . . . . . . . . . . . . .  
o.s 0.6 o .z  o . s  o.9 t 1.t 1.z o.s o.z o.s 0 .9  1 1.1 t . z  

Field rms heighl (cm) Field rms height (cm) 

Figure 4. Results of the SEM inversion for rms height for two different SIR-C images: (A) DT 35.01 is an ascending-pass ina- 
age (essentially perpendicular to the mean wash orientation); (B) DT 120.30 is a descending-pass image (parallel to the mean 
wash orientation); (C) and (D) show a comparison of the SEM results with the field rms height data for DT 35.01 and DT 
120.30, respectively. 

y axis; for the foreground plot (Fig. 5a), this is the differ- 
ence between image subsets of contrasting roughness; for 
the background plot (Fig. 5b), it is the mean variance 
within both subsets. These subsets have been chosen by 

using field knowledge but could have been chosen by us- 
ing recognized geological features, such as alluvial fans 
(rough) versus playa (smooth). By moving along the x 
axis and, hence, cycling through all possible w vectors 
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Figure 5. FIR solution profiles for rms height for C-band copolarized channels of DT 35.01 (dashed line) and DT 120.30 
(solid line). The x axis is an angle used to generate FIR filter weights for HH and VV polarizations. The sine of t:he angle is 
wm~ and the cosine of the angle is ww. Each point on the x axis is, therefore, a separate FIR filter, and moving along the x 
axis is equivalent to cycling through all possible linear combinations of HH and VV (all filters). Each FIR filter on the x axis is 
applied to the image data to produce a solution image. An objective function is calculated for each solution image and the re- 
sults plotted on the y axis. For the foreground (A), the objective function is the difference between samples of rough and 
smooth areas chosen from the solution images; for the background (B), the objective function is the variarlce within the sam- 
pies of rough and smooth areas. The foreground/background surface is showl in (C). 

(all combinations of C-band eopolarized ehannels) and 
by calculating the objective function, we constructed a 
solution profile. Because all pixels are a mixture of fore- 
ground and background, it is also of interest to look at 
the profile that is formed by the ratio of the foreground 
to background (Fig. 5c). When we examine the profiles 
shown in Figure 5, our objective for an indMdual image 
might be to choose solutions that maximize the fore- 
ground/background contrast or solutions that simply min- 
imize the background effects (see next section) to reduce 
contamination of the solution. However, in comparing 
profiles for two data takes, we see that there is a trough 
in the solution profiles where not only is the background 
reduced, but the solutions for DT 35.01 and DT 120,30 
become similar (less look-direction dependent). 

In Figure 6, the foregoing analysis is extended to in- 

elude both C- and L-band copolarized channels. Here 
we produce solution surfaces, rather than profiles, where 
the x and y axes are now the C-band and L-band 
weights. Each axis again contains two variables (the w 
values for HH and VV). The x-y plane contains all possi- 
ble ratios of HH and W " polarizations for C- and L-band. 
Each linear FIR filter in the x-y plane is applied to the 
images, and the objective functions are calculated to con- 
struet the solution surfaces. The resulting solution sur- 
faces for DT 35.01 (Fig. 6) are characterized by a large 
plane where solutions have similar foreground/baek- 
ground ratios and by a localized trough. The SEM, IEM, 
and empirical FBA solutions are examples of solutions 
that lie in the plane. 

Example solutions from the trough region are shown 
in Figure 7. Figures 7a and 7b show results obtained 
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Figure 6. Surtaaces generated from FIR filters designed to estimate rms height. Each 36×36 surtace is lbrincd by generating 
FIR filter weight (e.g., w,, vector) at 5 ° intervals over a range of 0 ° to 1S0 °. The w,, vector element corresponding to the tttt 
SAR measure is the sine of the angle, and that corresponding to ~.~ is the cosine of the angle for both C- and L-bands, The x 
axis corresponds to C-band and the y axis to L-band. (A) Foreground contrast, the absolute value of the mean difference in 
roughness between image data points from the fans below Kit Fox Hills and the Grotto Canyon Fan. (B) Backgronnd, weighted 
average of the separate standard deviations of the pixels defining the foreground and background. (C) The foreground divided 
by the background. 

from L-band copolarized channels for SIR-C DT 35.01 
and AIRSAR data take CM 3588 (using the same FIR 
filter). These images also have contrasting look directions 
(see Table 2). Figures 7e and 7d show results from C- 
and L-band copolarized channels for DT 35.01 and DT 
120.30 (again using the same FIR filter for each). 

DISCUSSION 

Empirieal FBA, SEM, and IEM Results 
Many of the differences observed between the FBA, 
SEM, IEM encountered in the preceding section are 
probably a consequence of the fact that the SEM and 
IEM inversion algorithms were developed and tested on 
a specific surface type--agricultural soil surfaces. Poten- 
tial differences between agricultural soil surfaces and 
geological surfaces are many, but here we focus on two 
areas of contrast: the distribution of roughness with scale 
(in particular, the presence of intermediate-scale rough- 
ness) and the detailed geometry of the intrinsic surface 
roughness itself. 

In contrast with agricultural fields, there are multi- 
ple scales of roughness in Death Valley, and they clearly 
pose a problem. The washes that descend the alluvial fan 
surfaces give rise to topography on the scale of meters 
to several meters (intermediate-scale roughness). Be- 
cause inversions for surface roughness from SAR data 
are focused on roughness at the radar-wavelength scale 
(intrinsic roughness), the presence of intermediate-scale 
roughness probably helps explain the SEM and IEM 
overestimation of rms height (Fig. 3). In addition, this 
topography has a preferred azimuthal orientation con- 

trolled by the slope of the alluvial tans. The look direc- 
tion of DT 35.01 is primarily at right angles to the mean 
wash orientation, whereas that of DT 120.30 is primarily 
parallel to the mean wash orientation. This suggests that 
intermediate-scale topography may account for the look- 
direction differences illustrated in Figure 4. 

Another potential contrast with agricultural surfaces 
lies in the detailed geometry of intrinsic surface rough- 
ness. Because a complete mathematical description of 
the surface geometry (intrinsic roughness) may require 
as many as five parameters (Golf, 1995), it is possible for 
vet?' different types of surface to have the same rms 
height and yet yield a very different backscatter. As we 
show here, even the sur/:aee power spectrum offset and 
slope, which represent a more complete description than 
rms height, do not adequately define surface type. In 
Figure 8, we illustrate two-dimensinal scattering calcula- 
tions of radar backscatter (Pak et al., 1996; Tsang et al., 
1994) for three different types of microtopographic pro- 
files. The solid line in Figures 8a and 8b shows the scat- 
tering coefficient lbr real topographic profiles from one 
of the sites in Death Valley, and the dotted line shows 
the coefficient calculated for simulated profiles having 
the same average spectral slope, offset, and rms height 
as the real profiles. The profiles are Monte Carlo simula- 
tions made by taking the inverse Fast Fourier Transibrm 
(FFT) of the power-law fit to the mean power spectrum 
determined from the real profiles and by assuming ran- 
dom phase. The dashed line shows the calculated back- 
scatter for sinmlated profiles again generated by using 
the power-law fit to the mean surface spectrum but with 
the nonrandom phases determined from the real profiles 
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Figure 7. Example of the type of solution that occurs within the trough of the {breground/background profiles and surfaces 
(Figs. 5 and 6). Such a solution appears to minimize the local variance. In (A) and (B), the foreground is designated by the 
roughest areas of the image and the baekground by the smoothest areas in the image. (A) Application to AIRSAR data, using 
L-band copolarized channels. (B) Application to SIR-C data take 35,01 [same FIR filter as in (A)], using L-band copolarized 
channels. (C) Application to SIR-C DT 35.01, using L- and C-band copolarized channels. (D) Application to SIR-C I)T 120.30, 
using L- and C-band copolarized channels. 
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Figure 8. Results of forward modeling of radar scattering, us- 
ing exact two-dimensional solutions (Tsang et al., 19941. (A) 
Scattering coefficient with scattering angle for three different 
types of surface profile (length approximately 1 m): the solid 

added to these best-fit spectra. The random-phase silnu- 
lated profiles are unlike the real profiles in appearance; 
the roughness is much more distributed in the simulated 
surfaces. Tile organization of the real surf:ace into dis- 
crete objects (pebbles) is reflected in the phase of the 
surt~aee FFT, which is nonrandom. The calculated back- 
scatter from the two types of surface is very different, 
with the simulated profiles having a much greater back- 
scatter for the rougher surfaces. In this case, nonrandom 
phase seems to allow much more forward scatter and, 
correspondingly, there is less backscatter. However, the 
random-phase surfaces have a stronger rms-height de- 
pendence that results in overestimation of the real sur- 
face baekscatter at the rougher end of the scale (greater 
than about 1 cm rms height for C-band) and underesti- 
mation of the baekscatter for the smoother surfaces 
(Fig. 8c). 

The phase of the surface power spectrum, therefore, 
plays a key role in determining the radar backscatter due 
to intrinsic surface roughness. Phase is a notoriously- dif- 
ficult quantity to analyze and, beyond the difference be- 
tween random and nonrandom phase, we do not under- 
stand what characteristics of phase are important. A 
much more complete analysis would be required before 
its effects could be understood and predicted. 

G e n e r a l i z e d  F B A  R e s u l t s  

In FBA, effects on the SAt/baekseatter of the intermedi- 
ate-scale roughness and the phase aspect of surfaces 
would be labeled as background effects that can propa- 
gate into the solution for the foreground (surt~ace rms 
height). The generalized FBA approach was developed 
in response to these issues. 

Generalized FBA reveals a large domain of solutions 
that are very dependent on the values of the input pa- 
rameters. Empirical roughness estimates determined by 
using the field roughness data, SEM, and IEM all fall 
into this category (see Fig. 6). However, the generalized 
FBA illustrated in Figures 5 and 6 also reveals a local- 
ized trough region of the solution space where solutions 
have a unique character and where the variability be- 

line shows averaged results from 40 real profiles at a site 
above the Kit Fox Hills in Death Valley; the dotted line 
shows results from profiles simulated by using the best-fit 
power law to the mean spectrum of the real profiles together 
with random phase; and the dashed line shows results lbr pro- 
files also simulated by using the power law but combined 
with the real phases taken from spectra of the 40 real pro- 
files. (B) An expansion of the baekseatter part of (A). The 
arrow indicates the monostatic backseatter value (-40°). (C) 
The calculated backseatter coefficient against rms height for 
each of the sites in Death Valley together with linear best 
fits: solid symbols and solid line show the results for profiles 
simulated as in (A, dotted line); open symbols and dashed 
line show results for the real profiles (20 per site). 
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tween solutions from DT 35.01 and DT 120.30 is much 
reduced (see Figs. 5 and 7). In this trough region, the 
effects of background factors (as we have defined them) 
are minimized, but this is 'also at the expense of fore- 
ground resolution, which also has a minimum in this re- 
gion (but slightly offset). Because these solutions mini- 
mize variance within fan units of uniform roughness, 
they are spatially smooth sohltions that resolve only three 
or four distinct levels of roughness. Broad fan units are 
clearly defined and coherent. Apparent lateral roughness 
variation along the fans emanating from the Kit Fox Hills 
(seen in the SEM and the IEM) is somewhat suppressed 
(especially when only one SAR frequency is used). About 
four levels of roughness are distinguished in going from 
the playa (rms height less than 0.5 era) to the roughest 
areas of Grotto Canyon Fan (rms height greater than 
1.2 era). 

The use of FIR filters to examine the entire set of 
linear solutions to roughness in Death Valley has, there- 
fore, uncovered some surprising new solutions that dis- 
play a more robust character than do existing algorithms 
and empirical solutions. The method is, however, depen- 
dent on the definition of the objective functions for fore- 
ground and background, and this is an area for future 
exploration. The objective function chosen in the forego- 
ing FBA to represent the foreground is imperfect. The 
fbreground was defined as the difference between sur- 
faces of different roughness. Defined in this way, the 
foreground is still to some degree open to the influence 
of intermediate-scale topography and to phase effects, to 
name just two background factors. Hence it may be that 
minimization of background factors (rather than max- 
imizing foreground/background contrast) presents the 
more robust route to a solution for roughness. 

General Discussion 

In general, the inversion of SAR data for surface rough- 
ness is extremely dependent on the complexity of the 
surface in question. In the case of fiat-lying, bare soil 
surfaces it is perhaps possible that consistent and accu- 
rate results be obtained with existing methods (e.g., 
SEM and IEM). However, in the extension to more 
complex surf:aces or surfaces of different character, the 
effects of background complexity will propagate into the 
solution for roughness in a generally unpredictable way. 
Note that it is the nature of the dependence between 
backscatter and roughness at the wavelength scale that 
appears to vary. Despite the complexity of the Death 
Valley alluvial fan surfaces, there is still a strong depen- 
dence of radar backscatter on surface roughness at the 
wavelength scale, but the dependency is different from 
that found for soil surfaces (Dubois et al., 1995). As a 
result, one can have a fairly high degree of success in 
producing a relative ranking of Death Valley surfaces by 
roughness, using the L-band amplitude, for example 

(Blumberg et al, personal communication), although in 
detail there will be errors. This strong relation between 
roughness parameters, such as power-spectrum offset 
and backscatter, suggests the possibility of retrieval of 
numerical roughness with a high degree of resolution. 
However, this is illusory unless we know betbrehand the 
specific roughness-backscatter relation for the, surfaces in 
question. If this is unknown, then numerical resolution 
of roughness must be sacrificed lbr robustness. The ex- 
traction of high-resolution numerical roughness would, 
therefore, rely on identification of surface type, and this 
might require the use of additional information other 
than the SAR data. Certainly, it would require all bands 
of SIR-C/XSAR data to minimize propagation of back- 
ground into roughness determinations. 

The motivation for this stu@ was to develop solu- 
tions for intrinsic roughness that are extendible over a 
range of conditions. The degree to which our methods 
are extendible remains, however, to be verified and is the 
focus of continuing work. 

CONCLUSIONS 

In Death Valley, the radar backscatter is strongly related 
to the offset of the surface power spectrum and weakly 
related to the rms height. Inversions for these parame- 
ters are, however, affected by intermediate-scale rough- 
ness and by the phase character of the surface. The rela- 
tion between roughness parameters and backscatter is 
thus a function of surt~ace t~qge. 

Examination of the solution space, using FBA, shows 
that SEM, IEM, and empirical FIR (field-measurement 
driven) represent similar types of solutions that are very 
dependent on the values of the input image parame- 
te rs - they  are sensitive to the background variability. A 
smaller ciass of FIR filters was found that are more sta- 
ble in this respect, but this stability is at the expense of 
reduced resolution of roughness. Only three to lbur 
roughness levels are resolved in Death Valley. There is 
a trade-off between resolution and consistency that ap- 
pears to be intrinsic to this inverse problem. Hence, re- 
duced resolution in solutions that are robust and ex- 
tendible is unavoidable unless new data can be brought 
to bear on the inversion. 
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