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Digital elevation model networks (DEMON):
A model of flow over hillslopes for computation

of contributing and dispersal areas

Mariza C. Costa-Cabral and Stephen J. Burges

Department of Civil Engineering, University of Washington, Seattle

Abstract.

Current algorithms for computing contributing areas from a rectangular grid

digital elevation model (DEM) use the flow-routing model of O’Callaghan and Mark
(1984), which has two major restrictions: (1) flow which originates over a two-
dimensional pixel is treated as a point source (nondimensional) and is projected
downslope by a line (one dimensional) (Moore and Grayson, 1991), and (2) the flow
direction in each pixel is restricted to eight possibilities. We show that large errors in
the computed contributing areas result for any terrain topography: divergent,
convergent, or planar. We present a new model, called digital elevation model
networks (DEMON), which avoids the above problems by representing flow in two
dimensions and directed by aspect. DEMON allows computation of both contributing
and dispersal areas. DEMON offers the main advantage of contour-based models (e.g.,
Moore et al., 1988), the representation of varying flow width over nonplanar
topography, while having the convenience of using rectangular grid DEMs.

1. Introduction

The specific contributing area (SCA), and the specific
dispersal area (SDA) (Figure 1), are distributed variables
with important hydrological, geomorphological, and geolog-
ical significance. The total contributing area (TCA) of a
contour segment is the plan area of terrain that contributes
flow to the contour segment. The SCA (designated often by
**a’’ in the literature) of a contour segment is the TCA
divided by the contour segment length. Because it is a plan
area, the concept of SCA relies on the assumption that the
plan view projection of flow directions does not change with
depth below the land surface and is determined by surface
topography. This assumption provides a valid approximation
where the terrain permeability is small relative to the rainfall
rate or where subsurface flow lines are approximately par-
allel in plan view to surface flow lines. The SCA is the plan
area located topographically upstream from the unit contour
length of interest. The SCA may be interpreted as an
equivalent flow path length, because when upslope flow lines
are parallel in plan view, the SCA equals the upslope flow
path length.

In hydrology and geomorphology, the SCA is used exten-
sively as an indicator of discharge. This assumes that the
rate of flow generation r is uniform spatially and that the
discharge rate is steady, in which case the specific discharge
equals SCA times r. While these conditions of uniformity
and equilibrium seldom are met in nature, they are assumed
often to approximate natural conditions. Uses of the SCA as
an indicator of discharge include studies of hillslope hydro-
logic response, channel location, long-term basin evolution,
landslide risk, soil water content, and vulnerability to pollu-
tion, among others. Indexes that combine the SCA as a
discharge indicator with other variables are used widely in
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hydrology and geomorphology. Examples of such indexes
are In(SCA/S), where § is slope, used to predict the soil
moisture deficit [Beven and Kirkby, 1979], and S 2SCA, used
to predict channel initiation by overland flow [Montgomery
and Dietrich, 1989, 1992; Montgomery and Foufoula-
Georgiou, 1993). Use of the SCA as an indicator of discharge
for prediction of the location and extent of channel networks
is widespread. Reviews of channel network location based
on SCA values obtained from rectangular digital elevation
models (DEMs) include those by Mark [1988] and Tarboton
et al. [1989, 1991].

The total dispersal area (TDA) of a contour segment is the
plan area of terrain that drains flow from that contour
segment. The SDA of a contour segment is the TDA divided
by the contour segment length. The underlying assumption is
the same as for the SCA definition, and the SDA is then the
plan area topographically downstream from the unit length
of contour. The SDA extends over the hillslope and may
terminate at a location of topographic convergence or at a
receiving water body. The SDA indicates the area of influ-
ence of flow generated at the given location and may be
used, for example, to predict the influence zone of upslope
pollution sources or of any development affecting terrain
permeability. Speight [1974, 1980] interpreted the SDA as an
indicator of soil drainage rate. Present uses of the SDA are
more limited than those of the SCA.

The SCA and the SDA were defined originally for a
segment of a contour line, and Speight [1974] pioneered the
computation of these variables for landform classification,
using a terrain partition based on contours and flow lines.
Given the convenience of representing distributed variables
for grid cells, or pixels, of rectangular digital elevation
models (DEMs), the concept of the SCA was transferred
from contour segments to DEM pixels and has joined the list
of geomorphometric parameters that are computed routinely
in the analysis of a DEM. Various models for flow routing in
rectangular DEMs have been proposed for the computation
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Figure 1. Illustration of the concepts of specific contribut-
ing area and specific dispersal area of a contour segment of
unit length. The channel network drains to the top right of
the figure.

of SCAs. These models have not been used, however, to
compute SDAs, given their inappropriate (one-dimensional)
downslope projection of flow. The same limitations that
render current grid-based models unsuitable for computing
SDAs make them equally inappropriate for computing
SCAs. The major fault of most current models is their point
source representation of flow generation and the resulting
one-dimensional representation of flow paths [Moore and
Grayson, 1991].

In digital elevation model networks (DEMON), flow is
generated areally, not at point sources. Flow generated over
a pixel is projected downslope over a two-dimensional flow
strip, analogous to a flow tube. Flow direction is determined
by the local aspect angle, in a manner similar to that used by
Lea [1992]. The computed width of a “‘flow tube’’ increases
over divergent topography, decreases over convergent to-
pography, and remains constant over plane surfaces. DE-
MON offers the main advantage of contour-based models
[e.g., Moore et al., 1988], the representation of flow width
variation as a function of local topography, and the benefits
of rectangular grid DEMs. In addition, it permits computa-
tion of both SCAs and SDAs.

2. Review of Existing Methods and Their
Limitations

Several methods exist for computing the SCA of a DEM
pixel. We are unaware of methods for computing the SDA of
a pixel. Computation of SDA values was possible previously
only for the areal segments of a contour-based terrain
partition [Moore and Grayson, 1991]. A review of the
principal methods for computing SCAs for DEM pixels and
what in our view are their limitations is presented below.

2.1. D8 [0’Callaghan and Mark, 1984]

The methods used most for SCA computation for DEM
pixels are based on the flow-routing model introduced by
O’Callaghan and Mark [1984]. We refer to them collectively
as method D8. In method D8, pixels are centered on the
DEM grid points, and each pixel discharges, or **spills,” into
one of its eight neighbors: the one located in the direction of
steepest descent. The total contributing area (TCA) of a
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pixel is the number of pixels whose flow reaches the pixel of
interest following a path of steepest descents, multiplied by
one pixel area, AxAy. The SCA of a pixel is given by the
TCA divided by the length of the segment orthogonal to flow
direction in the pixel, either a pixel side, Ax or Ay, or the
diagonal, (Ax? + Ay?)'2,

Efficient algorithms for computing TCAs search upslope
from a pixel and involve recursion. Examples include,
among others, the algorithm of Mark [1988] and those of
Tarboton et al. [1989, 1991].

The D8 method allows flow from each pixel to discharge to
only one receiving neighbor. This amounts to treating flow
which originated over a two-dimensional pixel as a point
source (nondimensional) and projecting it downslope by a
line (one dimensional) instead of a flow tube (two dimension-
al). This limitation has been pointed out by Moore and
Grayson [1991]. The single receiving neighbor also imposes
restrictions on possible flow path configurations because
flow can occur only in either a cardinal or diagonal direction.
The errors resulting from these limitations are different for
areas where flow is divergent (where flow tube width in-
creases downslope), convergent (flow tube width decreases
downslope), or parallel (flow tube width is constant).

For parallel flow the true SCA is equal numerically to the
flow path length. Method D8 computes the SCA correctly for
parallel flow only when flow is in the x or y direction. When
flow is at an angle to the principal grid orientation, two kinds
of errors arise: errors that affect flow path direction and
errors of SCA underestimation for a given flow path. The
first source of error results when flow is at an angle different
from a multiple of 45°. For example, if flow is at an angle of
30° (measured counterclockwise from east), then the steep-
est descent direction given by the D8 method will be toward
the NE, and each pixel will discharge into its NE neighbor.
This amounts to approximating the angle of flow to 45°, and
modeled flow is diverted from its true path by 15°.

The second source of error results from the one-
dimensional projection of flow. Consider parallel flow at an
angle of 315° (a multiple of 45°), shown in Figure 2. The
computed TCA is underestimated by a factor of 2 when using
method D8. When using D8, the computed SCAs for parallel
flow are correct for flow that is entirely in a cardinal
direction (0°, 90°, 180°, or 270°), are underestimated by a
factor of 2 for flow that is entirely in a diagonal direction (45°,
135°, 225°, or 315°), and are less than the correct value by a
factor between 1 and 2 for flow that changes along its path
between cardinal and diagonal directions. A simple correc-
tion by a factor of 2 is possibly only if the entire TCA of the

E;
AN
NNNNNENNEN]
ONNNNNANNNR]

(@) (b)

Figure 2. TCA of a pixel on a planar slope with aspect angle
315° (a) predicted by method D8 and (b) true TCA. Method
D8 underestimates the TCA of pixel A by a factor of 2.




COSTA-CABRAL AND BURGES: DIGITAL ELEVATION MODEL NETWORKS

pixel is in a diagonal direction. In cases where flow paths
have both cardinal and diagonal directions a correction
factor between 1 and 2 must be determined.

. P
For d:vergem flow over a Mgnt Circiliar <¢oine mountain

(Figure 3), the true TCA of any pixel includes the pixel itself
and a triangle with one vertex at the cone center and two
vertices at pixel corners. The SCA of a pixel at a distance r
from the cone center is numerically ciose to % r, and the SCA
has radial symmetry (Figure 3d). Divergent flow cannot be
represented by a linear path of steepest descents, hence the
SCA values computed by method D8 do not have radial
symmetry (Figure 3c). Modeled flow is concentrated arbi-
trarily on eight preferential paths oriented in the cardinal and
diagonal directions, while avoiding other paths. Conse-
quently, at any given distance r from the cone center, some
pixels drain all pixels between themselves and the cone
center and have an SCA close to r, an overestimation by a
factor of 2; while other pixels drain only themselves and
have an SCA equal to a pixel side (Ax or Ay), an underes-
timation that approaches 100% at large r. Similar problems
arise for convergent flow, such as over a right circular cone
crater (Figure 4). Again, modeled flow is concentrated along
eight preferential paths (Figure 4c), although overestimation
and underestimation of the SCA magnitudes are not as large
as for a cone mountain.

2.2. Rho8 [Fairfield and Leymarie, 1991])

Method Rho8 attempts to solve one of the problems of
method D8: the diversion of modeled flow paths toward a
cardinal or diagonal direction, resulting arbitrarily from grid
orientation. Method Rho8 introduces a stochastic compo-
nent into method D8, vielding flow paths that reflect more
closely the true aspect of hillslopes. As in method D8, each
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Figure 3. TCA of pixels on a right circular cone mountain
surface (or TDA of pixels on a right circular cone crater
surface): (a) TCA of pixels A, B, and C predicted by method
D8, (b) true TCA of pixels A, B, and C, (c) SCA contours for
method D8, and (d) true SCA contours. Radial symmetry is
not conserved with method D8. With D8, pixel A drains only
itself.
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Figure 4. TCA of pixels on a right circular cone crater
surface (or TDA of pixels on a right circular cone mountain
surface): (a) TCA of pixels A and B predicted by method DS,
(b) true TCA of pixels A and B, (¢) SCA contours for method
D8, and (d) true SCA contours. Radial symmetry is not
conserved with method D8. The TCA of pixel A is underes-
timated greatly.

pixel discharges into one of its eight neighbors. (A variation,
called method Rho4, considers only the four cardinal neigh-
bors.) The choice of the receiving pixel among the neighbors
is made stochastically. One of the neighbors is assigned a
probability p of being chosen and another neighbor is
assigned a probability 1 — p.

The scheme for assigning probabilities and the objective of
this method are illustrated in the following example. Con-
sider a plane surface with an aspect angle of 30° (measured
counterclockwise from east). Method D8 makes every pixel
discharge into its NE neighbor, resulting in a path direction
that is wrong by 15°. Method Rho8 assigns a probability p to
any given pixel discharging to its NE neighbor and a prob-
ability (1 — p) to it discharging to its eastern neighbor.
Therefore some pixels will discharge to their NE neighbor,
and the remainder will discharge to their eastern neighbor. If
the number of pixels discharging to the NE versus the
eastern neighbor is in the right proportion (the expected
proportion is p/(1 — p)), then the resulting flow lines will
have an overall direction of 30°. The value of p should be
such that the expected value of the flow path direction is
equal to the aspect angle.

While this method provides, in mathematical expectation,
appropriate flow path directions, all other problems identi-
fied above remain. Method Rho8 introduces problems of its
own: randomness does not ensure reproducible results; and
in locations of parallel flow, adjacent flow paths are not
parallel but wiggle randomly and therefore often converge
laterally with one another. Lateral convergence of flow paths
on plane surfaces, where flow should be parallel, concen-
trates upslope flow on only some pixels. Once two flow paths
have merged due to their random wiggling, there is no
mechanism that can make them diverge again, hence errors
increase downslope as flow becomes more and more con-
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centrated. Some pixels will have overestimated TCA values,
while others that were missed by the wiggling flow paths
have underestimated TCAs.

2.3. Lea [1992}

This method solves the problem attempted by Fuairfield
and Leymarie [1991] by routing flow according to local
aspect angle. The surface of each pixel is approximated by a
best fit plane, and the direction of steepest slope (or the
aspect angle) is computed (section 3.2 below). Flow is routed
downslope along a path comprising straight segments with
different directions, according to the aspect angle of each
pixel. The algorithm models the entry and exit points of flow
on the perimeter of each pixel along the flow path. Flow is
modeled as a *‘rolling ball’’ (point source assumption) mov-
ing across the topographic surface in the direction of local
aspect. Hence the major limitation of method D8, the
one-dimensional representation of flow, remains.

2.4. Multiple-Direction Methods

Multiple-direction methods attempt to solve the major
limitation of method D8, the one-dimensional representation
of flow, by distributing flow from a pixel among all of its
lower-elevation neighbor pixels, according to some specified
rule. Quinn et al. {1991] proposed that the fraction of flow
allocated to each lower neighbor i be determined by

SiL; |
fi-ESij (N

where the summation is for all lower neighbors, S is the
directional slope, and L is an *‘effective contour length’” that
acts as a weighting factor. The values of L used by Quinn et
al. [1991] were % of the pixel side for cardinal neighbors and
a fraction 0.354 of the pixel diagonal for diagonal neighbors.

Freeman [1991] proposed that the fraction of flow allo-
cated to each lower neighbor i be determined by

s?
eSS @

where § is the directional slope and p is a nonphysical
parameter. This method was tested for flow over a right
circular cone mountain, for different values of parameter p.
Since p = 1.1 provided drainage contours which ap-
proached circles, this value was recommended for use.
Freeman applied the method exclusively to divergent topog-
raphy and used a different algorithm for convergent topog-
raphy.

Figure 5 represents schematically the contributing area of
a pixel, labeled ““A,” located on three different surfaces: a
plane, a right circular cone mountain, and a right circular
cone crater. The contributing areas shown are those that
result from use of any multiple-direction algorithm, such as
those of Quinn et al. [1991] or Freeman [1991]. For an
inclined plane surface each pixel discharges to three or four
other pixels (depending on plane aspect), and only a fraction
of the discharge pixel surface area belongs to the contribut-
ing area of a receiving pixel. Therefore the contributing area
of a pixel does not include any full pixel but instead is
composed of portions of different pixels and is discontigu-
ous. The flow direction over the plane in Figure 5a is top to
bottom, and the true TCA of pixel A is the full area of the
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Figure 5. Schematic representation of the TCA of a pixel
that is estimated by any multiple-direction algorithm. The
size of the shaded square inside each pixel is proportional to
the size of that pixel’s portion that drains to pixel A. (a)
Predicted TCA of pixel A located on a plane surface where
flow is from top to bottom. (b) Predicted TCA of pixel A
located on a right circular cone mountain. (¢) Predicted TCA
of pixel A located on a right circular cone crater.

four pixels immediately above pixel A. Multiple-direction
algorithms predict that the contributing area is composed of
portions of pixels inside a triangular region. The computed
TCA value of a pixel is correct if it is located far enough from
the plane’s lateral edges, otherwise the triangular region is
incomplete and the TCA is underestimated. For the plane
represented in Figure Sa, 70 of the 100 pixels represented
have an underestimated TCA value (e.g., the TCA of pixels
labeled **B’” and ‘*C’’). Thus results are affected by bound-
ary proximity. For a right circular cone mountain (Figure 5b)
and a cone crater (Figure 5¢) the TCA of pixel A is, again,
discontiguous and includes portions of pixels located far
outside the true (triangular) contributing area. Parameter
calibration may yield predicted TCA values that are correct
(e.g., p = 1.1 in (2) for a right circular cone mountain). The
approximation relies on surface geometric symmetry and
will suffer to the extent that a natural terrain surface will
diverge from the symmetric geometric surfaces used for
parameter calibration. Due to their misplacement of contrib-
uting areas, multiple-direction algorithms are not appropri-
ate for contaminant tracing nor can they represent distrib-
uted runoff rates.

2.5. Summary

The D8 family of methods, used to compute SCAs for
DEM pixels, contains limitations which can result in large
errors for any terrain configuration, including planar, diver-
gent, and convergent topographies. More recent methods
attempt to overcome some of the problems of method DS8.
Lea [1992] provides a sound scheme for aspect-driven rout-
ing which is an improvement over D8 routing. However, no
satisfactory solution has been presented for the most impor-
tant limitation of method D8, the point source assumption
and one-dimensional routing. This problem has been ad-
dressed with partial success by multiple-direction models. In
our view, the most important limitations of multiple-
direction models are that the computed contributing areas
are discontiguous, and the quality of the approximation of
the computed values relies on geometric symmetry and is
affected by boundary proximity.

We present an alternative approach which attempts to
overcome the problems identified in this section by modeling
downslope flow in two dimensions and in well-defined flow
tubes.
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3. DEMON

In this section we define the SCA and SDA of a pixel (or,
in general, any terrain discretization element), discuss our
representation of the flow field, and describe the DEMON
algorithms used to compute the SCA and SDA matrices.

3.1.

The total contributing area (TCA) of a DEM pixel is the
plan-view area draining to that pixel. Implicit in this defini-
tion is the assumption that the plan-view projection of the
flow field does not change with depth below the land surface
and is determined by surface topography. The TCA of a
pixel is then the plan-view area of the collection of ali points
located upstream topographically from the pixel. A point is
located upstream topographically from a pixel if the surface
flow line passing through that point enters the pixel down-
stream. The SCA of a DEM pixel (or any terrain discretiza-
tion element) is defined as the average value of contributing
area per unit flow width as flow exits the pixe! and is
obtained by division of the pixel’s TCA by the total exiting
flow width, w, that is,

Definitions

TCA
SCA=—— (3
w

The TDA of a DEM pixel is the plan-view area draining
flow from the pixel. The implicit assumption is the same as in
the TCA definition. The TDA of a pixel is the plan-view area
of the collection of all points located topographically down-
stream from the pixel. A point is located topographically
downstream from a pixel if there is a flow line that passes
through the pixel and also through the point downstream.

The SDA is the TDA per unit flow width w:

TDA
SDA = — (4)
w

The total flow width w in (3) and (4) is the flow width
orthogonal to the flow direction along the portion of the pixel
boundary through which flow exits the pixel. For a DEM
grid with x and y axes pointing east and north, respectively.

and pixel dimensions Ax and Ay,

dw dw dw dw
—dl + —dl + — di + — dl
1 i, O p O 1

=j sin a(x, y = Ay) dx +f cos a(x = Ax, v) dy
In de

—f sin a{x, y =0) dx—f cos a(x =0, y) dy (5)
Is lw

where Iy, Ig, lg, and 1y, designate the lengths of the exit
segments lying on the northern, eastern, southern, and
western boundary segments, respectively, and o(x, v) s the
flow direction angle, measured counterclockwise from east.
Here /y and /g take values between zero and Ax, and {; and
ly take values between zero and Ay.

3.2. Surface Fitting to the DEM and Determination
of Flow Direction Angles

The SCA and SDA variables are determined entirely by
the flow field, that is, the field of flow direction angles, a{x.
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¥). Flow at a point is in the direction of maximal surface
siope and is obtained from the reverse direction of the
elevation tensor at that point. Thus determination of the flow
angle field requires prior knowledge of the elevation field.
Given that the DEM provides only a point sampling of
elevations, it is necessary to fit an elevation surface to the
DEM. This may be thought of as an attempt to reconstruct
the topographic surface after it had been stored in the
image-compressed form of a DEM. How well the recon-
structed surface represents the true topographic surface will
depend on the size of the DEM grid relative to the roughness
of the terrain and on the surface-fitting method.

The simplest surface-fitting method approximates the sur-
face of each pixel by a best fit plane using local interpolation.
In this case the fitted terrain surface consists of planar
mosaics and, in general, will be discontinuous (i.e., with
finite jumps from one pixel to the next). The approximation
is best for Ax and Ay small relative to topographic rough-
ness.

DEMON uses planar surfaces because a single-low direc-
tion within each pixel is simpler computationally. Pixels are
defined by grid lines, having grid points at the corners. The
elevation tensor in each pixel is given by vector ai + bj (i
and j are unit vectors in the x and y directions, respectively),
with

(6)

bziry‘(l]‘*'lz’lg_i’.‘;)

where z;., 25, 23, and z,4 are the elevations at the upper left,
upper right, lower right, and lower left pixel corners, respec-
tively. Flow is in the direction of vector — (ai + bj),
indicated by the aspect angle a.

For planar pixels, if the flow direction is parallel to the grid
orientation, the exit portion of the boundary is a single full
boundary segment. If the flow direction is not parallel to the
grid orientation, the exit portion of the boundary consists of
two full adjacent boundary segments. The general expres-
sion (5) for the flow width becomes

w = [sin a]Ax + |cos alAy @)

3.3. DEMON-Downslope and DEMON-Upslope Algorithms
for Computing the SCA and SDA Matrices

DEMON-downslope is a particle-tracking algorithm that
projects flow downslope using the matrix of flow angles and
allows computing both the SCA and SDA matrices. DE-
MON-upslope traces the boundary of a pixel’s contributing
area and calculates the size of the area enclosed by that line.
DEMON-upslope computes the SCA matrix faster than
DEMON-downslope but does not calculate the SDA matrix
because the TDA cannot always be bounded by a single
connected line (Figure 1). Whiie different, the two algo-
rithms, DEMON-downslope and DEMON-upslope, provide
the same SCA values. The information required by either
algorithm is the matrix of flow angles.

3.3.1. DEMON-downslope: SCA computation. If a unit
flow depth is generated uniformly everywhere over the area
covered by the DEM, the total flow volume drained by any
given pixel equals the pixel’'s TCA. DEMON-downslope
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Figure 6.

(a) Example of two-dimensional, aspect-driven (arrow directions) flow movement. Flow

originates over pixel (1,1). The area shaded is the TDA of pixel (1,1). (b) Influence matrix of pixel (1,1).
Each entry in the influence matrix represents the fraction of the area within pixel (1,1) that is drained by

a pixel. (¢) Illustration of the physical meaning of the value 0.58 of pixel (4,3) in Figure 6b.

considers that a unit flow depth is generated uniformly over
the surface of every pixel in the DEM. The flow generated
over each pixel is tracked downslope in two dimensions (i.e.,
as a flow tube) according to local terrain aspect, until the
flow either leaves the DEM or enters a sink pixel (a *‘pit’’).
The total flow drained by a given pixel equals that pixel’s
TCA.

DEMON-downslope takes one pixel at a time and makes it
a source pixel. A unit flow depth is considered to be
generated uniformly over the source pixel and is followed
downslope. Figure 6a shows two-dimensional aspect-driven
flow movement from source pixel (1,1) (we use (i, j) to
indicate the pixel corresponding to row i and column j of the
DEM). As we track the flow downslope, we compute the
flow volume drained by each pixel that the flow traverses.
The influence matrix of a source pixel contains the flow
volume from the source pixel that is drained by each pixel in
the DEM. If a pixel receives no flow from the source pixel,
its entry in the influence matrix is zero; if it drains all of the
flow, its entry is AxAy; and if it drains part of the flow, its
entry is a fraction of AxAy. Figure 6b is the influence matrix
of pixel (1,1) (in this example, Ax = Ay = |). The entries on
any cross diagonal of the influence matrix, before flow
convergence to a line occurs, sum to unity. Figure 6c shows
the physical location of the portion of the source pixel
(shaded area) associated with the entry of pixel (4,3) in the
influence matrix of pixel (1,1). Pixel (4,3) drains 58% of the
area of pixel (1,1).

The TCA matrix is computed by successive addition of the
influence matrix of every pixel in the DEM. In the example
DEM of Figure 6, 36 influence matrices, one for each source
pixel, are computed and added. The SCA matrix is com-
puted by division of the TCA matrix by the flow width
matrix, which is obtained from the matrix of flow angles
using (7).

We use Figure 6 to illustrate the three-step procedure for
computing the influence matrix of a pixel.

Step 1: Flow generated over the source pixel flows over
the pixel surface in the direction indicated by a. If ais a
multiple of 90°, all flow goes to a single neighbor. For
example, if « is equal to 180°, all flow will enter the western
neighbor. If « is not a multiple of 90°, then flow will be split
between two cardinal neighbors (S and E in Figure 7). There
can be no flow to a diagonal neighbor because contact with
diagonal neighbors is through a point (width of flow is
infinitesimally small), not a segment. For flow to reach a

diagonal neighbor it must cross through a cardinal neighbor.
Therefore a diagonal neighbor cannot be a direct receiving
pixel. Figure 7 illustrates how flow is split among the eastern
and southern neighbors for a = 292° (the flow angle of pixel
(1,1) in Figure 6). A flow particle generated in the upper right
shaded triangular area, moving at an angle of 292°, must
cross the eastern border and enter the eastern neighbor. The
area of the triangular section and the fractions f¢ and f are,
for a = 292°,

1 Ay 1

A 2 Ax tan (292°)

fe= 0.20; fs=1-fg=0.80

(8)

where A, represents the triangular area in Figure 7, and A
represents the pixel area (AxAy). Twenty percent of the flow
generated over pixel (1,1) is delivered to the E neighbor and
80% to the S neighbor.

Step 2: In Figure 6a, source the S neighbor. has two
receiving pixels. To follow flow downslope we must step to
one of these two receiving pixels, while the other one is put
on a waiting list for later consideration. Consider pixel (2,1),
with pixel (1,2) on the waiting list.

Step 3: Figure 8 illustrates the definition of the eight

NW N NE
w E
Sw S SE

Figure 7. Illustration of how flow from the source pixel is
partitioned between two cardinal neighbors. In this case the
flow angle in the source pixel is 292°, and flow is partitioned
between the eastern and southern neighbor pixels. The
fraction of flow that enters the eastern neighbor is the
fraction of the area of the source pixel represented by the
darker shaded triangular area.
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Figure 8. [Illustration of the definition of variables F, f},
f2, f3, Xy, X, x3, and I, needed for projecting flow across
pixel (4,2). F is the flow entering pixel (4,2) (the shaded
area); f| and f, are the lengths drained by the flow lines
bounding the flow tube; 7 = 1, 2, 3, 4 indicates flow entering
from the north, east, south, and west, respectively; x; and
x, indicate the points of entry of the bounding flow lines; x4
indicates the point of entry of the flow line generated at the
corner of the source pixel (dashed curve); f; = f; indicates
that all points inside the flow tube to the right of the dashed
curve drain the same amount of flow, while the flow drained
by any point to the left of the dashed curve varies linearly
across the flow tube.

variables (F, f,, f32, f3, I, x;, x;, and x3) required to
describe the geometry of flow movement across a pixel
(pixel (4,2) in Figure 8). (The DEM in Figure 8 is different
from that in the previous figures to facilitate displaying the
eight variables.) The source pixel being considered in Figure
8 is (1,1). The flow tube shown is the flow tube that has the
path (1,1)-(2,1)-(2,2)-(3,2)-(4,2). Part of the flow carried by
this flow tube will enter pixel (4,3) and the remainder will
enter pixel (5,2), that is, this flow tube will be split into two
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flow tubes. The fractions entering (4,3) and (5.2) are com-

ters 1IQiMey
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puted from geo me

Topographic convergence converts a flow strip (two di-
mensional) into a line (one dimensional). The vertical bold
arrow in the lower right of Figure 6a is an example of
one-dimensional flow. One-dimensional flow need not be
along pixel boundaries but may cross through pixels. Pro-
jecting a line according to flow angle requires only the
variables 7 and x| to keep track of the point of entry of the
flow line in each pixel [Lea, 1992].

The algorithm used to compute the influence matrix of a
pixel can follow one flow path at a time, that is, the dispersal
area of the pixel is dissected into several flow tubes so that
the path of each flow tube can be written as a path from one
pixel to the next. The flow tube in Figure 8 can be written as
(1,1)-(2,1)-(2,2)-(3,2)-(4,2), which is a directed graph. Figure
9a represents all the (directed graph) flow tube paths that can
be written for the example DEM shown in Figure 6. Figure
9b represents these paths schematically; each branch in
Figure 9b corresponds to one flow tube in Figure 9a.

3.3.2. DEMON-downslope: SDA computation. The
SDA is computed simultaneously with the SCA. As we step
to each pixel downslope and project flow through it, the size
of the area within the pixel occupied by the flow tube is
computed. The summation of all these areas is the TDA of
the source pixel (the shaded area in Figure 6a). The SCA
matrix is obtained from the TCA matrix through division by
the flow width matrix.

3.3.3. DEMON-upslope. The DEMON-upslope algo-
rithm computes the TCA directly for each pixel by tracing
the boundary of the pixel’s contributing area and calculating
the size of the area enclosed by that line. Most pixels have a
single source area, whose boundary intercepts two corners
of the pixel of interest. It is not possible to start at one pixel
corner and trace the entire boundary line until the second
pixel corner is reached. This is because for part of the way
the tracing direction is against the flow (going upslope),
while for the second part, movement is with the flow (going
downslope), and it is not known a priori which is the right
location to switch from upslope to downslope. Hence it is
necessary to trace the boundary line starting at each of its
two ends at the pixel corners and always move upslope, until
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Figure 9. (a) Flow tubes that must be considered to compute the influence matrix of pixel (1,1) in Figure

6. (b) Schematic representation of the flow tubes defin
split between two neighbor pixels. All paths exit the

ed in Figure 9a. Branching corresponds to flow being
DEM in concentrated form, indicated by **¢.”
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Figure 10. [llustration of the right-hand side (RH) and

left-hand side (LH) flow lines that must be traced uphill in
the DEMON-upslope algorithm.

the point where the two traced lines meet (Figure 10). Some
pixels may receive flow from two source areas, in which case
four lines must be traced. The three-step procedure for
computing the TCA of a pixel is as follows:

Step 1: Determine which of the four cardinal neighbors
discharge some flow to the pixel of interest. If a cardinal
neighbor drains into the pixel of interest, an indicator
variable for that neighbor is set to 1 (0 otherwise). Next, the
indicator variables of the four neighbors are checked in
clockwise order, and if a switch from 0 to 1 or from 1 to 0
from one neighbor to the next is found, then there is a
boundary line that starts at the corner point shared by those
two neighbors.

Step 2: Trace the TCA boundary lines uphill. If a pixel
has more than one contributing area, this procedure is
repeated for each. The boundary line consists of two lines
that join uphill; the left-hand (LH) line bounds the contrib-
uting area from the left, and the right-hand (RH) line bounds
the contributing area from the right as paths are followed
upslope from the pixel. The RH line is traced from the pixel
of interest by moving continuously against the flow direc-
tion. The coordinates of the points at which the line inter-
cepts the boundary of each pixel are stored. The RH line is
traced for some large, preestablished, number of pixels n,
(e.g., equal to 3 times the typical hillslope length for the
study area). The LH line is traced uphill in the same way,
until the RH line is met. While tracing the RH or LH line,
often a local elevation maximum is found. In such cases it is
not possible to move further upslope, so the path follows a
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Figure 11. TCA of a pixel on a planar slope with aspect
angle 315° predicted by DEMON.
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Figure 12. TCA of pixels on a right circular cone mountain
surface (or TDA of pixels on a right circular cone crater
surface) predicted by DEMON. (a) TCA of pixels A, B, and
C. The prediction is poorest for pixel B, which is overesti-
mated as a result of allowing for a single flow direction in
each pixel. (b) SCA contours.

line of divergence, that is, a line where flow directions
oppose each other on each side.

Step 3: After the RH and LH lines have been mapped,
the TCA boundary is known. The TCA is calculated from the
area enclosed by the boundary lines which is determined
from the stored coordinates that describe their paths.

4. Results

We present results from use of DEMON for a plane, a
right circular cone mountain, and a right circular cone crater
(Figures 11-13, respectively) to illustrate model performance
for parallel, convergent, and divergent flow conditions.
Figures 11-13 may be compared with Figures 2-4, which
show the corresponding results using D8; and Figures 11,
12a, and 13a may be compared with Figures 5a-5¢, which
show the corresponding results using multiple-direction al-
gorithms. For the plane, computed SCAs correspond cor-
rectly to the distance to the top of the plane. True SDAs for
a right circular cone mountain are the same as the SCAs for
a right circular cone crater and vice versa. For both cones
the predicted SCA and SDA isolines are approximately
circular with indentations to the north, east, south, and west.
These indentations are larger for the crater cone than for the
mountain cone, and in both cases they become more pro-
nounced with distance to the cone center. The indentations
result from the approximation of the conical surface by a
mosaic of planes, which generates a bias toward the N-S and
E-W directions. The indentations can be avoided only if a
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Figure 13. TCA of pixels on a right circular cone crater
surface (or TCA of pixels on a right circular cone mountain
surface). (a) TCA of pixels A and B predicted by DEMON.
(b) SCA contours.
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curved rather than a planar surface is fitted to each pixel;
using DEMON, the computational expense for nonplanar
surface fitting would be large. Significant errors may result
on concave or convex hillslopes that are long relative to grid
size, that is, comprising a large number of pixels. For a
conical surface the magnitude of the error a distance of 40
pixels away from the cone center is approximately 15%. For
a 10-m grid DEM, 40 pixels represents a physical distance of
400 m.

To illustrate model performance for natural topography,
we present results of computed SCAs and SDAs for the
pixels of a DEM for Mettman Ridge, in southern Oregon
[Zhang and Montgomery, 1994]. This DEM has a2 X 2 m
grid covering an area of 720 x 900 m? (360 x 450 pixels) and
was obtained by interpolation of a 1:4800 scale topographic
map [Montgomery, 1991]. Field mapping of the channel
network revealed that the land surface differed locally from
the DEM [Montgomery and Dietrich, 1994, Figure 4(b)]. The
SCA and SDA matrices obtained with DEMON are repre-
sented as images in Figures 14 and 15. Figure 16 shows the
SCAs computed using D8. DEMON represents hillslope
aspect better, while in D8 the erroneous tendency toward
preferred directions is obvious. Also, curved flow paths are
represented by DEMON but not D8.

In Figure 17 we plot the computed SCA values for each
pixel using DEMON and D8. Only pixels belonging to basins
that lie fully inside the DEM are represented, to eliminate
any DEM boundary effects. The disagreement between
computed SCAs spans 5 orders of magnitude at the hillslope
scale. The two methods agree in many pixels with a high
SCA value because no flow is lost in either routing model, so
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Figure 15. Image of the SDA matrix for the Mettman
Ridge study area obtained with DEMON. A logarithmic
scale of gray shades is used; lighter shades correspond to
higher values.

Figure 14. Image of the SCA matrix for the Mettman Ridge
study area obtained with DEMON. A logarithmic scale of
gray shades is used; lighter shades correspond to higher
values.

Figure 16.
study area obtained with D8. A logarithmic scale of gray
shades is used; lighter shades correspond to higher values.

Image of the SCA matrix for the Mettman Ridge
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that topographic convergence eventually leads to the same
value at the outlet of each basin. The large differences found
at the hillslope scale are attributed principally to D8 errors

similar to those illustrated in Figures 2-4.

Figure 18 shows the histograms of the SCAs smaller than
100 m computed with D8 and DEMON. The D8 histogram is
discontinuous, while the DEMON histogram is continuous
and smooth, as is to be expected over natural hillslopes. The
discontinuous D8 histogram reflects the fact that D8 TCAs
are integers, and flow width has only three possible values
(Ax, Ay, or (Ax? + Ay?)'?).

Figure 19 shows pixels with SCAs smaller than 4 m (i.e.,
draining themselves and one other pixel), for DEMON and
for D8. DEMON gives low values almost exclusively at or
near hillslope tops, while D8 gives low values at many
locations on the hillslopes. This is because some pixels are
missed by the one-dimensional flow paths of method D8
where flow is divergent (such as pixel A in Figure 3a).

Figure 20 shows pixels with SCAs higher than 1000 m, for
DEMON and for D8. There are significant differences be-
tween the two drainage configurations. Overall, the D8
network has straighter segments. Network structure is dif-
ferent at a location near the lower left-hand corner (see
arrow). Two D8 flow paths run parallel at a very short
distance from each other at a location in the central upper
half of the study area (see arrow). The high-SCA network
configuration computed with DEMON is in better agreement
with the field-surveyed channel network [Montgomery and
Dietrich, 1994, Figure 4(b)].

5. Conclusions

We have shown that the models presently in widest use for
computing the specific contributing area of rectangular grid
DEM pixels, those based on flow-routing method D8 [O’Cal-
laghan and Mark, 1984], can produce seriously erroneous
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Figure 17. Plot of SCA values for the Mettman Ridge
study area: D8, horizontal axis, and DEMON, vertical axis.
One fifth (32,400) of all pixels are shown to avoid clutter.
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Figure 18. Histogram of SCA values obtained with meth-

ods D8 (finer curve) and DEMON (heavier curve) for values
lower than 100 m.

results for either planar, convergent, or divergent topogra-
phy. The most important source of errors is the point source
assumption and the resulting one-dimensional flow routing
(each pixel discharges into only one neighbor pixel). Another
source of error is the restriction on the flow direction in each
pixel to only eight possibilities (multiples of 45°), established
by the orientation of the sampling grid. More recent models
reviewed attempt to overcome the limitations of method D8,
with partial success. Lea [1992] provides a sound scheme for
aspect-driven routing which is an improvement over D8
routing. However, no satisfactory solution has been pre-
sented for the most important limitation of method D8, the
point source assumption and one-dimensional routing. This
problem has been addressed with partial success by multi-
ple-direction models. The most important limitations of
multiple-direction models are that the computed contributing
areas are discontiguous, and the quality of the approxima-
tion of the computed values relies on surface geometric
symmetry and is affected by boundary proximity.

DEMON computes the specific contributing areas and
specific dispersal areas of DEM pixels. Assignment of flow
directions is according to aspect angle, as given by Lea
[1992]. Flow path routing is two dimensional, allowing
representation of the effect of terrain topography on flow
path width. Flow path width remains constant over planar
terrain, increases over divergent topography, and decreases
over convergent topography. Thus the proposed model has
capabilities which at present are offered only by contour-
based flow models, while having the convenience of using
rectangular grid DEMs.

Results for geometric surfaces for which SCAs can be
computed analytically show that DEMON approximates
analytic values, while D8 has large errors for either parallel,
convergent, or divergent flow. Computed SCAs for the
Mettman Ridge DEM using D8 and DEMON differ by 5
orders of magnitude at the hillslope scale. The two methods
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have better agreement at high SCA values, because flow
conservation leads to similar values after flow is concen-
trated into linear paths by terrain convergence. The large
errors at the hillslope scale indicate that D8 is inappropriate
for hillslope applications, including studies of hillslope hy-
drologic response, channel head location, long-term basin
evolution, landslide risk, and soil water content.

We presented two equivalent algorithms for computing
SCAs: DEMON-downslope and DEMON-upslope. DE-
MON-downslope provides more information than DEMON-
upslope. The particle-tracking approach of DEMON-
downslope may be used for surface sediment or pollutant
tracking. While both algorithms can be adapted to accom-

Figure 19. Image of the SCA values less than 4 m, that is,
pixels that drain no more than the area of one pixel other
than themselves for (a) DEMON and (b) D8. Low values of
SCA are located over large ridges for DEMON but are
ubiquitous on the hillslopes for D8.
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Figure 20. Image of the SCA values larger than 1000 m for
(a) DEMON and (b) D8. (In some locations the networks are
discontinuous because the pits in the original DEM were not
removed.)

modate distributed values of runoff generation, only DE-
MON-downslope can permit reinfiltration. DEMON-
downslope can also provide SDA values for individual flow
tubes within a pixel, which may constitute useful informa-
tion for a large grid size. Finally, DEMON-downslope dis-
tinguishes between dispersed (two dimensional in plan view)
and concentrated (one-dimensional) flow, information with
potential utility for models of rainfall-runoff, soil water
content, and other applications.
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